These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement. Liu C; Li MC; Chen W; Huang R; Hong S; Wu Q; Mei C Carbohydr Polym; 2020 Oct; 246():116548. PubMed ID: 32747235 [TBL] [Abstract][Full Text] [Related]
3. High-Lignin-Containing Cellulose Nanofibrils from Date Palm Waste Produced by Hydrothermal Treatment in the Presence of Maleic Acid. Najahi A; Tarrés Q; Delgado-Aguilar M; Putaux JL; Boufi S Biomacromolecules; 2023 Aug; 24(8):3872-3886. PubMed ID: 37523756 [TBL] [Abstract][Full Text] [Related]
4. Lignin-containing cellulose nanofibers made with microwave-aid green solvent treatment for magnetic fluid stabilization. Liu C; Li Z; Li MC; Chen W; Xu W; Hong S; Wu Q; Mei C Carbohydr Polym; 2022 Sep; 291():119573. PubMed ID: 35698338 [TBL] [Abstract][Full Text] [Related]
5. Coupled Effects of Fibril Width, Residual and Mechanically Liberated Lignin on the Flow, Viscoelasticity, and Dewatering of Cellulosic Nanomaterials. Imani M; Dimic-Misic K; Tavakoli M; Rojas OJ; Gane PAC Biomacromolecules; 2020 Oct; 21(10):4123-4134. PubMed ID: 32790994 [TBL] [Abstract][Full Text] [Related]
6. Facile preparation of lignin-containing cellulose nanofibrils from sugarcane bagasse by mild soda-oxygen pulping. Yao L; Hu S; Wang X; Lin M; Zhang C; Chen Y; Yue F; Qi H Carbohydr Polym; 2022 Aug; 290():119480. PubMed ID: 35550769 [TBL] [Abstract][Full Text] [Related]
7. Influence of initial chemical composition and characteristics of pulps on the production and properties of lignocellulosic nanofibers. Ehman NV; Lourenço AF; McDonagh BH; Vallejos ME; Felissia FE; Ferreira PJT; Chinga-Carrasco G; Area MC Int J Biol Macromol; 2020 Jan; 143():453-461. PubMed ID: 31778692 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the fibrillation method on lignocellulosic nanofibers production from eucalyptus sawdust: A comparative study between high-pressure homogenization and grinding. Tarrés Q; Oliver-Ortega H; Boufi S; Àngels Pèlach M; Delgado-Aguilar M; Mutjé P Int J Biol Macromol; 2020 Feb; 145():1199-1207. PubMed ID: 31726148 [TBL] [Abstract][Full Text] [Related]
9. Multiphasic lignocellulose-based suspension for oil-water interfacial stabilization: Synergistic adsorption and phase behavior. Yuan T; Zeng J; Guo D; Sun Q; Wang B; Sha L; Chen K Int J Biol Macromol; 2023 Jan; 224():1142-1151. PubMed ID: 36302477 [TBL] [Abstract][Full Text] [Related]
10. Effective fractionation strategy of sugarcane bagasse lignin to fabricate quality lignin-based carbon nanofibers supercapacitors. Du B; Chai L; Zhu H; Cheng J; Wang X; Chen X; Zhou J; Sun RC Int J Biol Macromol; 2021 Aug; 184():604-617. PubMed ID: 34171257 [TBL] [Abstract][Full Text] [Related]
11. Paper-Based Oil Barrier Packaging using Lignin-Containing Cellulose Nanofibrils. H Tayeb A; Tajvidi M; Bousfield D Molecules; 2020 Mar; 25(6):. PubMed ID: 32188070 [TBL] [Abstract][Full Text] [Related]
12. Lignin-Containing Cellulose Nanofibrils from TEMPO-Mediated Oxidation of Date Palm Waste: Preparation, Characterization, and Reinforcing Potential. Najahi A; Tarrés Q; Mutjé P; Delgado-Aguilar M; Putaux JL; Boufi S Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616036 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the effect of hot-compressed water treatment on enzymatic hydrolysis of lignocellulosic nanofibrils with different lignin content using a quartz crystal microbalance. Kumagai A; Lee SH; Endo T Biotechnol Bioeng; 2016 Jul; 113(7):1441-7. PubMed ID: 26694223 [TBL] [Abstract][Full Text] [Related]
14. Enhanced permeability, mechanical and antibacterial properties of cellulose acetate ultrafiltration membranes incorporated with lignocellulose nanofibrils. Yang S; Wang T; Tang R; Yan Q; Tian W; Zhang L Int J Biol Macromol; 2020 May; 151():159-167. PubMed ID: 32061851 [TBL] [Abstract][Full Text] [Related]
15. Facile isolation of cellulose nanofibers from water hyacinth using water-based mechanical defibrillation: Insights into morphological, physical, and rheological properties. Pakutsah K; Aht-Ong D Int J Biol Macromol; 2020 Feb; 145():64-76. PubMed ID: 31874270 [TBL] [Abstract][Full Text] [Related]
16. Bark derived submicron-sized and nano-sized cellulose fibers: From industrial waste to high performance materials. Nair SS; Yan N Carbohydr Polym; 2015 Dec; 134():258-66. PubMed ID: 26428123 [TBL] [Abstract][Full Text] [Related]
17. Morphological and rheological properties of cellulose nanofibrils prepared by post-fibrillation endoglucanase treatment. Wang X; Zeng J; Zhu JY Carbohydr Polym; 2022 Nov; 295():119885. PubMed ID: 35989020 [TBL] [Abstract][Full Text] [Related]
18. Mechanically strong nanopapers based on lignin containing cellulose micro- and nano-hybrid fibrils: Lignin content-fibrils morphology-strengthening mechanism. Dong J; Zeng J; Li P; Li J; Wang B; Xu J; Gao W; Chen K Carbohydr Polym; 2023 Jul; 311():120753. PubMed ID: 37028856 [TBL] [Abstract][Full Text] [Related]
19. Exploiting the Properties of Non-Wood Feedstocks to Produce Tailorable Lignin-Containing Cellulose Nanofibers. Lamm ME; Johnson DA; Copenhaver K; Bhagia S; Hubbard AM; Walker CC; Doyle K; Ozcan S Polymers (Basel); 2024 Sep; 16(18):. PubMed ID: 39339062 [TBL] [Abstract][Full Text] [Related]
20. Multifunction lignin-based carbon nanofibers with enhanced electromagnetic wave absorption and surpercapacitive energy storage capabilities. Du B; Zhu H; Bai Y; Xu J; Pan Z; Wang Q; Wang X; Zhou J Int J Biol Macromol; 2022 Feb; 199():201-211. PubMed ID: 34995658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]