BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33357928)

  • 1. Cellulose nanofibrils (CNFs) produced by different mechanical methods to improve mechanical properties of recycled paper.
    Hu F; Zeng J; Cheng Z; Wang X; Wang B; Zeng Z; Chen K
    Carbohydr Polym; 2021 Feb; 254():117474. PubMed ID: 33357928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose nanofibrils manufactured by various methods with application as paper strength additives.
    Zeng J; Zeng Z; Cheng Z; Wang Y; Wang X; Wang B; Gao W
    Sci Rep; 2021 Jun; 11(1):11918. PubMed ID: 34099799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of natural rubber reinforced with cellulose nanofibers based on fiber diameter distribution as estimated by differential centrifugal sedimentation.
    Kumagai A; Tajima N; Iwamoto S; Morimoto T; Nagatani A; Okazaki T; Endo T
    Int J Biol Macromol; 2019 Jan; 121():989-995. PubMed ID: 30342153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites.
    Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM
    Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Toughened and Transparent Biobased Epoxy Composites Reinforced with Cellulose Nanofibrils.
    Nair SS; Dartiailh C; Levin DB; Yan N
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30960595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and properties of cellulose nanofibrils from coconut palm petioles by different mechanical process.
    Xu C; Zhu S; Xing C; Li D; Zhu N; Zhou H
    PLoS One; 2015; 10(4):e0122123. PubMed ID: 25875280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method to produce cellulose nanofibrils from microalgae and the measurement of their mechanical strength.
    Lee HR; Kim K; Mun SC; Chang YK; Choi SQ
    Carbohydr Polym; 2018 Jan; 180():276-285. PubMed ID: 29103506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of endoglucanase and high-pressure homogenization post-treatments on mechanically grinded cellulose nanofibrils and their film performance.
    Xu Y; Yang S; Zhao P; Wu M; Song X; Ragauskas AJ
    Carbohydr Polym; 2021 Feb; 253():117253. PubMed ID: 33279003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and Rheological Characterization of Cellulose Nanofibrils (CNFs) from Coir Fibers in Comparison to Wood and Cotton.
    Yue D; Qian X
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments.
    Tian C; Yi J; Wu Y; Wu Q; Qing Y; Wang L
    Carbohydr Polym; 2016 Jan; 136():485-92. PubMed ID: 26572379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of the Enzyme Charge on the Production and Morphological Features of Cellulose Nanofibrils.
    Henríquez-Gallegos S; Albornoz-Palma G; Andrade A; Soto C; Pereira M
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches.
    Qing Y; Sabo R; Zhu JY; Agarwal U; Cai Z; Wu Y
    Carbohydr Polym; 2013 Aug; 97(1):226-34. PubMed ID: 23769541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparison Study on the Characteristics of Nanofibrils Isolated from Fibers and Parenchyma Cells in Bamboo.
    Zhang X; Huang H; Qing Y; Wang H; Li X
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31935802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose nanofibers from recycled and virgin wood pulp: A comparative study of fiber development.
    Ang S; Haritos V; Batchelor W
    Carbohydr Polym; 2020 Apr; 234():115900. PubMed ID: 32070520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose nanofibrils/polyvinyl acetate nanocomposite adhesives with improved mechanical properties.
    Chaabouni O; Boufi S
    Carbohydr Polym; 2017 Jan; 156():64-70. PubMed ID: 27842853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose Nanofibrils as a Damping Material for the Production of Highly Crystalline Nanosized Zeolite Y via Ball Milling.
    Nassrullah H; Anis SF; Lalia BS; Hashaikeh R
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cationic starch in the presence of cellulose nanofibrils on structural, optical and strength properties of paper from soda bagasse pulp.
    Tajik M; Torshizi HJ; Resalati H; Hamzeh Y
    Carbohydr Polym; 2018 Aug; 194():1-8. PubMed ID: 29801816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallization and mechanical properties of reinforced PHBV composites using melt compounding: Effect of CNCs and CNFs.
    Jun D; Guomin Z; Mingzhu P; Leilei Z; Dagang L; Rui Z
    Carbohydr Polym; 2017 Jul; 168():255-262. PubMed ID: 28457448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites.
    Saba N; Mohammad F; Pervaiz M; Jawaid M; Alothman OY; Sain M
    Int J Biol Macromol; 2017 Apr; 97():190-200. PubMed ID: 28082223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose Nanofibrils-based Hydrogels for Biomedical Applications: Progresses and Challenges.
    Liu H; Liu K; Han X; Xie H; Si C; Liu W; Bae Y
    Curr Med Chem; 2020; 27(28):4622-4646. PubMed ID: 32124687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.