BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33357928)

  • 21. Mixed-linkage (1,3;1,4)-β-d-glucans as rehydration media for improved redispersion of dried cellulose nanofibrils.
    Zha L; Wang S; Berglund LA; Zhou Q
    Carbohydr Polym; 2023 Jan; 300():120276. PubMed ID: 36372496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sustainable valorization of paper mill sludge into cellulose nanofibrils and cellulose nanopaper.
    Du H; Parit M; Wu M; Che X; Wang Y; Zhang M; Wang R; Zhang X; Jiang Z; Li B
    J Hazard Mater; 2020 Dec; 400():123106. PubMed ID: 32580093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y
    Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rice straw cellulose nanofibrils reinforced poly(vinyl alcohol) composite films.
    Wang Z; Qiao X; Sun K
    Carbohydr Polym; 2018 Oct; 197():442-450. PubMed ID: 30007633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gel Point as Measurement of Dispersion Degree of Nano-Cellulose Suspensions and Its Application in Papermaking.
    Sanchez-Salvador JL; Balea A; Negro C; Monte MC; Blanco A
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellulose Nanofibrils Aerogel Cross-Linked by Poly(vinyl alcohol) and Acrylic Acid for Efficient and Recycled Adsorption with Heavy Metal Ions.
    She J; Tian C; Wu Y; Li X; Luo S; Qing Y; Jiang Z
    J Nanosci Nanotechnol; 2018 Jun; 18(6):4167-4175. PubMed ID: 29442758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphological and rheological properties of cellulose nanofibrils prepared by post-fibrillation endoglucanase treatment.
    Wang X; Zeng J; Zhu JY
    Carbohydr Polym; 2022 Nov; 295():119885. PubMed ID: 35989020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils.
    Zhao J; He X; Wang Y; Zhang W; Zhang X; Zhang X; Deng Y; Lu C
    Carbohydr Polym; 2014 Apr; 104():143-50. PubMed ID: 24607171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of cellulose nanofibrils and starch compared with polyacrylamide on fundamental properties of pulp and paper.
    Tajik M; Jalali Torshizi H; Resalati H; Hamzeh Y
    Int J Biol Macromol; 2021 Dec; 192():618-626. PubMed ID: 34626728
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers.
    Babaee M; Jonoobi M; Hamzeh Y; Ashori A
    Carbohydr Polym; 2015 Nov; 132():1-8. PubMed ID: 26256317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-fibrillated bacterial cellulose nanofibers as a sustainable additive to enhance recycled paper quality.
    Campano C; Merayo N; Negro C; Blanco Á
    Int J Biol Macromol; 2018 Jul; 114():1077-1083. PubMed ID: 29605254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Curaua and eucalyptus nanofibers films by continuous casting: Mechanical and thermal properties.
    Claro PIC; Corrêa AC; de Campos A; Rodrigues VB; Luchesi BR; Silva LE; Mattoso LHC; Marconcini JM
    Carbohydr Polym; 2018 Feb; 181():1093-1101. PubMed ID: 29253936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extraction of cellulose nanofibers from cocos nucifera var aurantiaca peduncle by ball milling combined with chemical treatment.
    Nagarajan KJ; Balaji AN; Ramanujam NR
    Carbohydr Polym; 2019 May; 212():312-322. PubMed ID: 30832863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transparent and strong polymer nanocomposites generated from Pickering emulsion gels stabilized by cellulose nanofibrils.
    Liu X; Qi X; Guan Y; He Y; Li S; Liu H; Zhou L; Wei C; Yu C; Chen Y
    Carbohydr Polym; 2019 Nov; 224():115202. PubMed ID: 31472833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From Cellulose to Cellulose Nanofibrils-A Comprehensive Review of the Preparation and Modification of Cellulose Nanofibrils.
    Yi T; Zhao H; Mo Q; Pan D; Liu Y; Huang L; Xu H; Hu B; Song H
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33182719
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CNFs from twin screw extrusion and high pressure homogenization: A comparative study.
    Baati R; Mabrouk AB; Magnin A; Boufi S
    Carbohydr Polym; 2018 Sep; 195():321-328. PubMed ID: 29804983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-step processing of plasticized starch/cellulose nanofibrils nanocomposites via twin-screw extrusion of starch and cellulose fibers.
    Fourati Y; Magnin A; Putaux JL; Boufi S
    Carbohydr Polym; 2020 Feb; 229():115554. PubMed ID: 31826520
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescently labeled cellulose nanofibrils for detection and loss analysis.
    Reid MS; Karlsson M; Abitbol T
    Carbohydr Polym; 2020 Dec; 250():116943. PubMed ID: 33049855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fit-for-Use Nanofibrillated Cellulose from Recovered Paper.
    Balea A; Monte MC; Fuente E; Sanchez-Salvador JL; Tarrés Q; Mutjé P; Delgado-Aguilar M; Negro C
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764564
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents.
    Xu X; Liu F; Jiang L; Zhu JY; Haagenson D; Wiesenborn DP
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2999-3009. PubMed ID: 23521616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.