BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 3335866)

  • 21. Immunohistochemical demonstration of glutamate dehydrogenase in astrocytes.
    Kaneko T; Akiyama H; Mizuno N
    Neurosci Lett; 1987 Jun; 77(2):171-5. PubMed ID: 3299156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glutamate dehydrogenase: some properties of the rat brain enzyme from different cellular compartments.
    Arce C; Cañadas S; Oset-Gasque MJ; Castro E; González MP
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1990; 97(2):265-7. PubMed ID: 1982869
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.
    Nissen JD; Pajęcka K; Stridh MH; Skytt DM; Waagepetersen HS
    Glia; 2015 Dec; 63(12):2313-26. PubMed ID: 26221781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases.
    McKenna MC; Stridh MH; McNair LF; Sonnewald U; Waagepetersen HS; Schousboe A
    J Neurosci Res; 2016 Dec; 94(12):1561-1571. PubMed ID: 27629247
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Different response of astrocytes and Bergmann glial cells to portacaval shunt: an immunohistochemical study in the rat cerebellum.
    Suárez I; Bodega G; Arilla E; Rubio M; Villalba R; Fernández B
    Glia; 1992; 6(3):172-9. PubMed ID: 1282500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of astrochondrin with extracellular matrix components and its involvement in astrocyte process formation and cerebellar granule cell migration.
    Streit A; Nolte C; Rásony T; Schachner M
    J Cell Biol; 1993 Feb; 120(3):799-814. PubMed ID: 7678837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reduced glial fibrillary acidic protein and glutamine synthetase expression in astrocytes and Bergmann glial cells in the rat cerebellum caused by delta(9)-tetrahydrocannabinol administration during development.
    Suárez I; Bodega G; Fernández-Ruiz JJ; Ramos JA; Rubio M; Fernández B
    Dev Neurosci; 2002; 24(4):300-12. PubMed ID: 12457068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The activities in different neural cell types of certain enzymes associated with the metabolic compartmentation glutamate.
    Patel AJ; Hunt A; Gordon RD; Balázs R
    Brain Res; 1982 May; 256(1):3-11. PubMed ID: 6124308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells.
    Yamada K; Watanabe M
    Anat Sci Int; 2002 Jun; 77(2):94-108. PubMed ID: 12418089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The cellular distribution of certain enzymes associated with the metabolic compartmentation of glutamate.
    Gordon RD; Hunt A; Patel AJ
    Biochem Soc Trans; 1981 Feb; 9(1):115-6. PubMed ID: 6111507
    [No Abstract]   [Full Text] [Related]  

  • 31. Preferential loading of bergmann glia with synthetic acetoxymethyl calcium dyes.
    Hoogland TM; Kuhn B; Wang SS
    Cold Spring Harb Protoc; 2011 Oct; 2011(10):1228-31. PubMed ID: 21969621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fañanas cells-the forgotten cerebellar glia cell type: Immunocytochemistry reveals two potassium channel-related polypeptides, Kv2.2 and Calsenilin (KChIP3) as potential marker proteins.
    Goertzen A; Veh RW
    Glia; 2018 Oct; 66(10):2200-2208. PubMed ID: 30151916
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glucocorticoid upregulation of glutamate dehydrogenase gene expression in vitro in astrocytes.
    Hardin-Pouzet H; Giraudon P; Belin MF; Didier-Bazes M
    Brain Res Mol Brain Res; 1996 Apr; 37(1-2):324-8. PubMed ID: 8738168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glutamate dehydrogenase in aminoacidergic structures of the postnatally developing rat cerebellum.
    Wolf G; Schünzel G
    Neurosci Lett; 1987 Jul; 78(1):7-11. PubMed ID: 3614773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immunohistochemical localization of sn-glycerol-3-phosphate dehydrogenase in Bergmann glia and oligodendroglia in the mouse cerebellum.
    Fisher M; Gapp DA; Kozak LP
    Brain Res; 1981 Jun; 227(3):341-54. PubMed ID: 6790131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes.
    Pajęcka K; Nissen JD; Stridh MH; Skytt DM; Schousboe A; Waagepetersen HS
    J Neurosci Res; 2015 Jul; 93(7):1093-100. PubMed ID: 25656783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuronal influence on glial enzyme expression: evidence from mutant mouse cerebella.
    Fisher M
    Proc Natl Acad Sci U S A; 1984 Jul; 81(14):4414-8. PubMed ID: 6379643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the development of the cerebellum of the trout, Salmo gairdneri. V. Neuroglial cells and their development.
    Pouwels E
    Anat Embryol (Berl); 1978 May; 153(1):67-83. PubMed ID: 655439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimulation of the inferior olivary complex alters the distribution of the type 1 corticotropin releasing factor receptor in the adult rat cerebellar cortex.
    Tian JB; King JS; Bishop GA
    Neuroscience; 2008 Apr; 153(1):308-17. PubMed ID: 18358620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conversion of a glutamate dehydrogenase into methionine/norleucine dehydrogenase by site-directed mutagenesis.
    Wang XG; Britton KL; Stillman TJ; Rice DW; Engel PC
    Eur J Biochem; 2001 Nov; 268(22):5791-9. PubMed ID: 11722565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.