These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection. Satkunendrarajah K; Nassiri F; Karadimas SK; Lip A; Yao G; Fehlings MG Exp Neurol; 2016 Feb; 276():59-71. PubMed ID: 26394202 [TBL] [Abstract][Full Text] [Related]
24. Dietary restriction started after spinal cord injury improves functional recovery. Plunet WT; Streijger F; Lam CK; Lee JH; Liu J; Tetzlaff W Exp Neurol; 2008 Sep; 213(1):28-35. PubMed ID: 18585708 [TBL] [Abstract][Full Text] [Related]
25. Reduced functional recovery by delaying motor training after spinal cord injury. Norrie BA; Nevett-Duchcherer JM; Gorassini MA J Neurophysiol; 2005 Jul; 94(1):255-64. PubMed ID: 15985696 [TBL] [Abstract][Full Text] [Related]
26. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury. Weishaupt N; Hurd C; Wei DZ; Fouad K Exp Neurol; 2013 Sep; 247():241-9. PubMed ID: 23684634 [TBL] [Abstract][Full Text] [Related]
27. Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury. McPherson JG; Miller RR; Perlmutter SI Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12193-8. PubMed ID: 26371306 [TBL] [Abstract][Full Text] [Related]
28. Spinal interneurons and forelimb plasticity after incomplete cervical spinal cord injury in adult rats. Gonzalez-Rothi EJ; Rombola AM; Rousseau CA; Mercier LM; Fitzpatrick GM; Reier PJ; Fuller DD; Lane MA J Neurotrauma; 2015 Jun; 32(12):893-907. PubMed ID: 25625912 [TBL] [Abstract][Full Text] [Related]
29. Acute intermittent hypoxia and rehabilitative training following cervical spinal injury alters neuronal hypoxia- and plasticity-associated protein expression. Hassan A; Arnold BM; Caine S; Toosi BM; Verge VMK; Muir GD PLoS One; 2018; 13(5):e0197486. PubMed ID: 29775479 [TBL] [Abstract][Full Text] [Related]
30. Plasticity beyond peri-infarct cortex: spinal up regulation of structural plasticity, neurotrophins, and inflammatory cytokines during recovery from cortical stroke. Sist B; Fouad K; Winship IR Exp Neurol; 2014 Feb; 252():47-56. PubMed ID: 24291254 [TBL] [Abstract][Full Text] [Related]
31. Automated lever task with minimum antigravity movement for rats with cervical spinal cord injury. Samejima S; Ievins AM; Boissenin A; Tolley NM; Khorasani A; Mondello SE; Moritz CT J Neurosci Methods; 2022 Jan; 366():109433. PubMed ID: 34863839 [TBL] [Abstract][Full Text] [Related]
32. Delayed Intervention with Intermittent Hypoxia and Task Training Improves Forelimb Function in a Rat Model of Cervical Spinal Injury. Prosser-Loose EJ; Hassan A; Mitchell GS; Muir GD J Neurotrauma; 2015 Sep; 32(18):1403-12. PubMed ID: 25664481 [TBL] [Abstract][Full Text] [Related]
34. Spinal pathways involved in the control of forelimb motor function in rats. Anderson KD; Gunawan A; Steward O Exp Neurol; 2007 Aug; 206(2):318-31. PubMed ID: 17603042 [TBL] [Abstract][Full Text] [Related]
35. Delayed transplantation with exogenous neurotrophin administration enhances plasticity of corticofugal projections after spinal cord injury. Iarikov DE; Kim BG; Dai HN; McAtee M; Kuhn PL; Bregman BS J Neurotrauma; 2007 Apr; 24(4):690-702. PubMed ID: 17439351 [TBL] [Abstract][Full Text] [Related]
36. Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Sequard syndrome. Filli L; Zörner B; Weinmann O; Schwab ME Brain; 2011 Aug; 134(Pt 8):2261-73. PubMed ID: 21752788 [TBL] [Abstract][Full Text] [Related]
37. Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: relationship to the corticospinal tract. Anderson KD; Gunawan A; Steward O Exp Neurol; 2005 Jul; 194(1):161-74. PubMed ID: 15899253 [TBL] [Abstract][Full Text] [Related]
38. Ryk controls remapping of motor cortex during functional recovery after spinal cord injury. Hollis ER; Ishiko N; Yu T; Lu CC; Haimovich A; Tolentino K; Richman A; Tury A; Wang SH; Pessian M; Jo E; Kolodkin A; Zou Y Nat Neurosci; 2016 May; 19(5):697-705. PubMed ID: 27065364 [TBL] [Abstract][Full Text] [Related]
39. Challenges of animal models in SCI research: Effects of pre-injury task-specific training in adult rats before lesion. May Z; Fouad K; Shum-Siu A; Magnuson DSK Behav Brain Res; 2015 Sep; 291():26-35. PubMed ID: 25975172 [TBL] [Abstract][Full Text] [Related]
40. Course of motor recovery following ventrolateral spinal cord injury in the rat. Webb AA; Muir GD Behav Brain Res; 2004 Nov; 155(1):55-65. PubMed ID: 15325779 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]