These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 33359319)

  • 1. Logistic regression and machine learning predicted patient mortality from large sets of diagnosis codes comparably.
    Cowling TE; Cromwell DA; Bellot A; Sharples LD; van der Meulen J
    J Clin Epidemiol; 2021 May; 133():43-52. PubMed ID: 33359319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel approach selected small sets of diagnosis codes with high prediction performance in large healthcare datasets.
    Cowling TE; Cromwell DA; Sharples LD; van der Meulen J
    J Clin Epidemiol; 2020 Dec; 128():20-28. PubMed ID: 32781116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes.
    Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S
    JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictors of 30-Day Mortality Among Dutch Patients Undergoing Colorectal Cancer Surgery, 2011-2016.
    van den Bosch T; Warps AK; de Nerée Tot Babberich MPM; Stamm C; Geerts BF; Vermeulen L; Wouters MWJM; Dekker JWT; Tollenaar RAEM; Tanis PJ; Miedema DM;
    JAMA Netw Open; 2021 Apr; 4(4):e217737. PubMed ID: 33900400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-year mortality of colorectal cancer patients: development and validation of a prediction model using linked national electronic data.
    Cowling TE; Bellot A; Boyle J; Walker K; Kuryba A; Galbraith S; Aggarwal A; Braun M; Sharples LD; van der Meulen J
    Br J Cancer; 2020 Nov; 123(10):1474-1480. PubMed ID: 32830202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Outcomes After Hip Fracture Surgery Compared With Elective Total Hip Replacement.
    Le Manach Y; Collins G; Bhandari M; Bessissow A; Boddaert J; Khiami F; Chaudhry H; De Beer J; Riou B; Landais P; Winemaker M; Boudemaghe T; Devereaux PJ
    JAMA; 2015 Sep; 314(11):1159-66. PubMed ID: 26372585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach.
    Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK
    Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ICD-10 adaptations of the Ontario acute myocardial infarction mortality prediction rules performed as well as the original versions.
    Vermeulen MJ; Tu JV; Schull MJ
    J Clin Epidemiol; 2007 Sep; 60(9):971-4. PubMed ID: 17689814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ICD-10 Charlson Comorbidity Index predicted mortality but not resource utilization following hip fracture.
    Toson B; Harvey LA; Close JC
    J Clin Epidemiol; 2015 Jan; 68(1):44-51. PubMed ID: 25447352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of incident myocardial infarction using machine learning applied to harmonized electronic health record data.
    Mandair D; Tiwari P; Simon S; Colborn KL; Rosenberg MA
    BMC Med Inform Decis Mak; 2020 Oct; 20(1):252. PubMed ID: 33008368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictors of mortality in older hip fracture inpatients admitted to an orthogeriatric unit in oslo, norway.
    Holvik K; Ranhoff AH; Martinsen MI; Solheim LF
    J Aging Health; 2010 Dec; 22(8):1114-31. PubMed ID: 20881106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary care electronic medical records can be used to predict risk and identify potentially modifiable factors for early and late death in adult onset epilepsy.
    Hrabok M; Engbers JDT; Wiebe S; Sajobi TT; Subota A; Almohawes A; Federico P; Hanson A; Klein KM; Peedicail J; Pillay N; Singh S; Josephson CB
    Epilepsia; 2021 Jan; 62(1):51-60. PubMed ID: 33316095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Validation of Machine Learning Models for Prediction of 1-Year Mortality Utilizing Electronic Medical Record Data Available at the End of Hospitalization in Multicondition Patients: a Proof-of-Concept Study.
    Sahni N; Simon G; Arora R
    J Gen Intern Med; 2018 Jun; 33(6):921-928. PubMed ID: 29383551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. External validation of ADO, DOSE, COTE and CODEX at predicting death in primary care patients with COPD using standard and machine learning approaches.
    Morales DR; Flynn R; Zhang J; Trucco E; Quint JK; Zutis K
    Respir Med; 2018 May; 138():150-155. PubMed ID: 29724388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Machine Learning to Predict Rehabilitation Outcomes in Postacute Hip Fracture Patients.
    Shtar G; Rokach L; Shapira B; Nissan R; Hershkovitz A
    Arch Phys Med Rehabil; 2021 Mar; 102(3):386-394. PubMed ID: 32949551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian logistic injury severity score: a method for predicting mortality using international classification of disease-9 codes.
    Burd RS; Ouyang M; Madigan D
    Acad Emerg Med; 2008 May; 15(5):466-75. PubMed ID: 18439203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comorbidity scores for administrative data benefited from adaptation to local coding and diagnostic practices.
    Bottle A; Aylin P
    J Clin Epidemiol; 2011 Dec; 64(12):1426-33. PubMed ID: 21764557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Risk Prediction Using Routine Data: Development and Validation of Multivariable Models Predicting 30- and 90-day Mortality after Surgical Treatment of Colorectal Cancer].
    Crispin A; Strahwald B; Cheney C; Mansmann U
    Gesundheitswesen; 2018 Nov; 80(11):963-973. PubMed ID: 29864770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing Machine Learning to Regression Methods for Mortality Prediction Using Veterans Affairs Electronic Health Record Clinical Data.
    Jing B; Boscardin WJ; Deardorff WJ; Jeon SY; Lee AK; Donovan AL; Lee SJ
    Med Care; 2022 Jun; 60(6):470-479. PubMed ID: 35352701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extensive phenotype data and machine learning in prediction of mortality in acute coronary syndrome - the MADDEC study.
    Hernesniemi JA; Mahdiani S; Tynkkynen JA; Lyytikäinen LP; Mishra PP; Lehtimäki T; Eskola M; Nikus K; Antila K; Oksala N
    Ann Med; 2019 Mar; 51(2):156-163. PubMed ID: 31030570
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.