BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3335933)

  • 21. The effect of nutrient profiles of the Dietary Approaches to Stop Hypertension (DASH) diets on blood pressure and bone metabolism and composition in normotensive and hypertensive rats.
    Doyle L; Cashman KD
    Br J Nutr; 2003 May; 89(5):713-24. PubMed ID: 12720595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Blood pressure and heart rate development in young spontaneously hypertensive rats.
    Dickhout JG; Lee RM
    Am J Physiol; 1998 Mar; 274(3):H794-800. PubMed ID: 9530190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneously hypertensive rat vascular smooth muscle cells in culture exhibit increased growth and Na+/H+ exchange.
    Berk BC; Vallega G; Muslin AJ; Gordon HM; Canessa M; Alexander RW
    J Clin Invest; 1989 Mar; 83(3):822-9. PubMed ID: 2537850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disordered drinking in developing spontaneously hypertensive rats.
    Kraly FS; Coogan LA; Specht SM; Trattner MS; Zayfert C; Cohen A; Goldstein JA
    Am J Physiol; 1985 Apr; 248(4 Pt 2):R464-70. PubMed ID: 3985189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Na+/H+ exchange activity and NHE-3 expression in renal tubules from the spontaneously hypertensive rat.
    LaPointe MS; Sodhi C; Sahai A; Batlle D
    Kidney Int; 2002 Jul; 62(1):157-65. PubMed ID: 12081574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellular distribution of the renal bumetanide-sensitive Na-K-2Cl cotransporter BSC-1 in the inner stripe of the outer medulla during the development of hypertension in the spontaneously hypertensive rat.
    Sonalker PA; Tofovic SP; Jackson EK
    Clin Exp Pharmacol Physiol; 2007 Dec; 34(12):1307-12. PubMed ID: 17973873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vasopressin and renin response to plasma volume loss in spontaneously hypertensive rats.
    Sladek CD; Blair ML; Chen YH; Rockhold RW
    Am J Physiol; 1986 Mar; 250(3 Pt 2):H443-52. PubMed ID: 3513627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heart and red blood cell antioxidant status and plasma lipid levels in the spontaneously hypertensive and normotensive Wistar-Kyoto rat.
    Yuan YV; Kitts DD; Godin DV
    Can J Physiol Pharmacol; 1996 Mar; 74(3):290-7. PubMed ID: 8773409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dietary sodium restriction and development of hypertension in spontaneously hypertensive rats.
    Toal CB; Leenen FH
    Am J Physiol; 1983 Dec; 245(6):H1081-4. PubMed ID: 6660309
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Renal hemodynamics during development of hypertension in young spontaneously hypertensive rats.
    Christiansen RE; Roald AB; Tenstad O; Iversen BM
    Kidney Blood Press Res; 2002; 25(5):322-8. PubMed ID: 12435879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased plasma calcitonin levels in young spontaneously hypertensive rats: role in disturbed phosphate homeostasis.
    Bindels RJ; van den Broek LA; Jongen MJ; Hackeng WH; Löwik CW; van Os CH
    Pflugers Arch; 1987 Apr; 408(4):395-400. PubMed ID: 3588256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathogenesis of hypercalciuria in spontaneously hypertensive rats.
    Hsu CH; Chen PS; Smith DE; Yang CS
    Miner Electrolyte Metab; 1986; 12(2):130-41. PubMed ID: 3960017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential effects of angiotensin II type-1 receptor antisense oligonucleotides on renal function in spontaneously hypertensive rats.
    Yoneda M; Sanada H; Yatabe J; Midorikawa S; Hashimoto S; Sasaki M; Katoh T; Watanabe T; Andrews PM; Jose PA; Felder RA
    Hypertension; 2005 Jul; 46(1):58-65. PubMed ID: 15956107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction between irbesartan, peroxisome proliferator-activated receptor (PPAR-γ), and adiponectin in the regulation of blood pressure and renal function in spontaneously hypertensive rats.
    Afzal S; Sattar MA; Johns EJ; Abdulla MH; Akhtar S; Hashmi F; Abdullah NA
    J Physiol Biochem; 2016 Dec; 72(4):593-604. PubMed ID: 27405250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of deep-frying oil on blood pressure and oxidative stress in spontaneously hypertensive and normotensive rats.
    Yen PL; Chen BH; Yang FL; Lu YF
    Nutrition; 2010 Mar; 26(3):331-6. PubMed ID: 19592221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Segmental renal vascular resistance in the spontaneously hypertensive rat.
    Hsu CH; Slavicek JH; Kurtz TW
    Am J Physiol; 1982 Jun; 242(6):H961-6. PubMed ID: 7091356
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Na+/H+ exchange in pulmonary artery smooth muscle from spontaneously hypertensive and Wistar-Kyoto rats.
    Silverman ES; Thompson BT; Quinn DA; Kinane TB; Bonventre JV; Hales CA
    Am J Physiol; 1995 Nov; 269(5 Pt 1):L673-80. PubMed ID: 7491988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time course of changes in the norepinephrine content of tissues from spontaneously hypertensive and Wistar Kyoto rats.
    Donohue SJ; Stitzel RE; Head RJ
    J Pharmacol Exp Ther; 1988 Apr; 245(1):24-31. PubMed ID: 3361444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insulin increases Na(+)-H+ exchange activity in proximal tubules from normotensive and hypertensive rats.
    Gesek FA; Schoolwerth AC
    Am J Physiol; 1991 May; 260(5 Pt 2):F695-703. PubMed ID: 1674643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential cardiotoxicity in response to chronic doxorubicin treatment in male spontaneous hypertension-heart failure (SHHF), spontaneously hypertensive (SHR), and Wistar Kyoto (WKY) rats.
    Sharkey LC; Radin MJ; Heller L; Rogers LK; Tobias A; Matise I; Wang Q; Apple FS; McCune SA
    Toxicol Appl Pharmacol; 2013 Nov; 273(1):47-57. PubMed ID: 23993975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.