BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33359336)

  • 1. The dynamic modular fingerprints of the human brain at rest.
    Kabbara A; Paban V; Hassan M
    Neuroimage; 2021 Feb; 227():117674. PubMed ID: 33359336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying and characterizing resting state networks in temporally dynamic functional connectomes.
    Zhang X; Li X; Jin C; Chen H; Li K; Zhu D; Jiang X; Zhang T; Lv J; Hu X; Han J; Zhao Q; Guo L; Li L; Liu T
    Brain Topogr; 2014 Nov; 27(6):747-65. PubMed ID: 24903106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.
    Yuan H; Ding L; Zhu M; Zotev V; Phillips R; Bodurka J
    Brain Connect; 2016 Mar; 6(2):122-35. PubMed ID: 26414793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
    Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J
    Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consistency of network modules in resting-state FMRI connectome data.
    Moussa MN; Steen MR; Laurienti PJ; Hayasaka S
    PLoS One; 2012; 7(8):e44428. PubMed ID: 22952978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain Network Dynamics Correlate with Personality Traits.
    Kabbara A; Paban V; Weill A; Modolo J; Hassan M
    Brain Connect; 2020 Apr; 10(3):108-120. PubMed ID: 32093482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-dependent functional connectivity in resting state networks.
    Samogin J; Marino M; Porcaro C; Wenderoth N; Dupont P; Swinnen SP; Mantini D
    Hum Brain Mapp; 2020 Dec; 41(18):5187-5198. PubMed ID: 32840936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BOLD correlates of EEG topography reveal rapid resting-state network dynamics.
    Britz J; Van De Ville D; Michel CM
    Neuroimage; 2010 Oct; 52(4):1162-70. PubMed ID: 20188188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovering dynamic task-modulated functional networks with specific spectral modes using MEG.
    Zhu Y; Liu J; Ye C; Mathiak K; Astikainen P; Ristaniemi T; Cong F
    Neuroimage; 2020 Sep; 218():116924. PubMed ID: 32445878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability of Magnetoencephalography and High-Density Electroencephalography Resting-State Functional Connectivity Metrics.
    Marquetand J; Vannoni S; Carboni M; Li Hegner Y; Stier C; Braun C; Focke NK
    Brain Connect; 2019 Sep; 9(7):539-553. PubMed ID: 31115272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic recruitment of resting state sub-networks.
    O'Neill GC; Bauer M; Woolrich MW; Morris PG; Barnes GR; Brookes MJ
    Neuroimage; 2015 Jul; 115():85-95. PubMed ID: 25899137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Dynamic Core Network and Global Efficiency in the Resting Human Brain.
    de Pasquale F; Della Penna S; Sporns O; Romani GL; Corbetta M
    Cereb Cortex; 2016 Oct; 26(10):4015-33. PubMed ID: 26347485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency specific interactions of MEG resting state activity within and across brain networks as revealed by the multivariate interaction measure.
    Marzetti L; Della Penna S; Snyder AZ; Pizzella V; Nolte G; de Pasquale F; Romani GL; Corbetta M
    Neuroimage; 2013 Oct; 79():172-83. PubMed ID: 23631996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cortical core for dynamic integration of functional networks in the resting human brain.
    de Pasquale F; Della Penna S; Snyder AZ; Marzetti L; Pizzella V; Romani GL; Corbetta M
    Neuron; 2012 May; 74(4):753-64. PubMed ID: 22632732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis approach to explore resting-state networks.
    Musso F; Brinkmeyer J; Mobascher A; Warbrick T; Winterer G
    Neuroimage; 2010 Oct; 52(4):1149-61. PubMed ID: 20139014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast transient networks in spontaneous human brain activity.
    Baker AP; Brookes MJ; Rezek IA; Smith SM; Behrens T; Probert Smith PJ; Woolrich M
    Elife; 2014 Mar; 3():e01867. PubMed ID: 24668169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchrony, metastability, dynamic integration, and competition in the spontaneous functional connectivity of the human brain.
    Wens V; Bourguignon M; Vander Ghinst M; Mary A; Marty B; Coquelet N; Naeije G; Peigneux P; Goldman S; De Tiège X
    Neuroimage; 2019 Oct; 199():313-324. PubMed ID: 31170458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inter- and intra-subject variability of neuromagnetic resting state networks.
    Wens V; Bourguignon M; Goldman S; Marty B; Op de Beeck M; Clumeck C; Mary A; Peigneux P; Van Bogaert P; Brookes MJ; De Tiège X
    Brain Topogr; 2014 Sep; 27(5):620-34. PubMed ID: 24777562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical electrophysiological evidence for individual-specific temporal organization of brain functional networks.
    Shu S; Qin L; Yin Y; Han M; Cui W; Gao JH
    Hum Brain Mapp; 2020 Jun; 41(8):2160-2172. PubMed ID: 31961469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The electrophysiological connectome is maintained in healthy elders: a power envelope correlation MEG study.
    Coquelet N; Mary A; Peigneux P; Goldman S; Wens V; De Tiège X
    Sci Rep; 2017 Oct; 7(1):13984. PubMed ID: 29070789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.