These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33359548)

  • 1. Standardized electronic health record data modeling and persistence: A comparative review.
    Gamal A; Barakat S; Rezk A
    J Biomed Inform; 2021 Feb; 114():103670. PubMed ID: 33359548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Archetype Query Language interpreter into MongoDB: Managing NoSQL standardized Electronic Health Record extracts systems.
    Ramos M; Sánchez-de-Madariaga R; Barros J; Carrajo L; Vázquez G; Pérez S; Pascual M; Martín-Sánchez F; Muñoz-Carrero A
    J Biomed Inform; 2020 Jan; 101():103339. PubMed ID: 31733329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examining database persistence of ISO/EN 13606 standardized electronic health record extracts: relational vs. NoSQL approaches.
    Sánchez-de-Madariaga R; Muñoz A; Lozano-Rubí R; Serrano-Balazote P; Castro AL; Moreno O; Pascual M
    BMC Med Inform Decis Mak; 2017 Aug; 17(1):123. PubMed ID: 28821246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Executing Complexity-Increasing Queries in Relational (MySQL) and NoSQL (MongoDB and EXist) Size-Growing ISO/EN 13606 Standardized EHR Databases.
    Sánchez-de-Madariaga R; Muñoz A; Castro AL; Moreno O; Pascual M
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29608174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Archetype-based data warehouse environment to enable the reuse of electronic health record data.
    Marco-Ruiz L; Moner D; Maldonado JA; Kolstrup N; Bellika JG
    Int J Med Inform; 2015 Sep; 84(9):702-14. PubMed ID: 26094821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternatives to relational database: comparison of NoSQL and XML approaches for clinical data storage.
    Lee KK; Tang WC; Choi KS
    Comput Methods Programs Biomed; 2013 Apr; 110(1):99-109. PubMed ID: 23177219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Querying EHRs with a Semantic and Entity-Oriented Query Language.
    Lelong R; Soualmia L; Dahamna B; Griffon N; Darmoni SJ
    Stud Health Technol Inform; 2017; 235():121-125. PubMed ID: 28423767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing the Performance of NoSQL Approaches for Managing Archetype-Based Electronic Health Record Data.
    Freire SM; Teodoro D; Wei-Kleiner F; Sundvall E; Karlsson D; Lambrix P
    PLoS One; 2016; 11(3):e0150069. PubMed ID: 26958859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic Health Record Challenges, Workarounds, and Solutions Observed in Practices Integrating Behavioral Health and Primary Care.
    Cifuentes M; Davis M; Fernald D; Gunn R; Dickinson P; Cohen DJ
    J Am Board Fam Med; 2015; 28 Suppl 1(Suppl 1):S63-72. PubMed ID: 26359473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interoperability of clinical decision-support systems and electronic health records using archetypes: a case study in clinical trial eligibility.
    Marcos M; Maldonado JA; Martínez-Salvador B; Boscá D; Robles M
    J Biomed Inform; 2013 Aug; 46(4):676-89. PubMed ID: 23707417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for cohort selection of cardiovascular disease records from an electronic health record system.
    Abrahão MTF; Nobre MRC; Gutierrez MA
    Int J Med Inform; 2017 Jun; 102():138-149. PubMed ID: 28495342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An adaptive spark-based framework for querying large-scale NoSQL and relational databases.
    Khashan E; Eldesouky A; Elghamrawy S
    PLoS One; 2021; 16(8):e0255562. PubMed ID: 34411131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representing knowledge, data and concepts for EHRS using DCM.
    Goossen W
    Stud Health Technol Inform; 2011; 169():774-8. PubMed ID: 21893852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Definition, structure, content, use and impacts of electronic health records: a review of the research literature.
    Häyrinen K; Saranto K; Nykänen P
    Int J Med Inform; 2008 May; 77(5):291-304. PubMed ID: 17951106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cloud-based approach for interoperable electronic health records (EHRs).
    Bahga A; Madisetti VK
    IEEE J Biomed Health Inform; 2013 Sep; 17(5):894-906. PubMed ID: 25055368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Template and Model Driven Development of Standardized Electronic Health Records.
    Kropf S; Chalopin C; Denecke K
    Stud Health Technol Inform; 2015; 216():30-4. PubMed ID: 26262004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research evidence on strategies enabling integration of electronic health records in the health care systems of low- and middle-income countries: A literature review.
    Kumar M; Mostafa J
    Int J Health Plann Manage; 2019 Apr; 34(2):e1016-e1025. PubMed ID: 30762907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fast Healthcare Interoperability Resources (FHIR) layer implemented over i2b2.
    Boussadi A; Zapletal E
    BMC Med Inform Decis Mak; 2017 Aug; 17(1):120. PubMed ID: 28806953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic health records and cardiac implantable electronic devices: new paradigms and efficiencies.
    Slotwiner DJ
    J Interv Card Electrophysiol; 2016 Oct; 47(1):29-35. PubMed ID: 27585791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proposal of an architecture for the national integration of Electronic Health Records: a semi-centralized approach.
    Al Jarullah A; El-Masri S
    Stud Health Technol Inform; 2012; 180():917-21. PubMed ID: 22874326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.