These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 33359811)
1. Synthesis and characterization of Schiff base containing bovine serum albumin-gum arabic aldehyde hybrid nanogels via inverse miniemulsion for delivery of anticancer drug. Bashiri G; Shojaosadati SA; Abdollahi M Int J Biol Macromol; 2021 Feb; 170():222-231. PubMed ID: 33359811 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterisation of gelatin-gum arabic aldehyde nanogels via inverse miniemulsion technique. Sarika PR; James NR Int J Biol Macromol; 2015 May; 76():181-7. PubMed ID: 25748843 [TBL] [Abstract][Full Text] [Related]
3. Curcumin loaded gum arabic aldehyde-gelatin nanogels for breast cancer therapy. Sarika PR; Nirmala RJ Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():331-7. PubMed ID: 27157759 [TBL] [Abstract][Full Text] [Related]
4. Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: synthesis and characterization. Sarika PR; Anil Kumar PR; Raj DK; James NR Carbohydr Polym; 2015 Mar; 119():118-25. PubMed ID: 25563951 [TBL] [Abstract][Full Text] [Related]
5. Interpenetrating polymer network (IPN) nanogels based on gelatin and poly(acrylic acid) by inverse miniemulsion technique: synthesis and characterization. Koul V; Mohamed R; Kuckling D; Adler HJ; Choudhary V Colloids Surf B Biointerfaces; 2011 Apr; 83(2):204-13. PubMed ID: 21185698 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of schizophyllan nanogels via inverse emulsion using biobased materials. Mousaviasl S; Saleh T; Shojaosadati SA; Boddohi S Int J Biol Macromol; 2018 Dec; 120(Pt A):468-474. PubMed ID: 30153460 [TBL] [Abstract][Full Text] [Related]
7. Novel propyl karaya gum nanogels for bosentan: In vitro and in vivo drug delivery performance. Laha B; Das S; Maiti S; Sen KK Colloids Surf B Biointerfaces; 2019 Aug; 180():263-272. PubMed ID: 31059984 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and Characterization of Dual-Sensitive Fluorescent Nanogels for Enhancing Drug Delivery and Tracking Intracellular Drug Delivery. Wu SY; Debele TA; Kao YC; Tsai HC Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28534813 [TBL] [Abstract][Full Text] [Related]
9. Preparation, characterization and biological evaluation of curcumin loaded alginate aldehyde-gelatin nanogels. P R S; James NR; P R AK; Raj DK Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():251-257. PubMed ID: 27524019 [TBL] [Abstract][Full Text] [Related]
10. Pressure responsive nanogel base on Alginate-Cyclodextrin with enhanced apoptosis mechanism for colon cancer delivery. Hosseinifar T; Sheybani S; Abdouss M; Hassani Najafabadi SA; Shafiee Ardestani M J Biomed Mater Res A; 2018 Feb; 106(2):349-359. PubMed ID: 28940736 [TBL] [Abstract][Full Text] [Related]
11. A Self-Skin Permeable Doxorubicin Loaded Nanogel Composite as a Transdermal Device for Breast Cancer Therapy. Mukkukada Ravi R; Mani A; Rahim S; Anirudhan TS ACS Appl Mater Interfaces; 2024 Sep; 16(38):50407-50429. PubMed ID: 39259941 [TBL] [Abstract][Full Text] [Related]
12. pH responsive biodegradable nanogels for sustained release of bleomycin. Sahu P; Kashaw SK; Kushwah V; Sau S; Jain S; Iyer AK Bioorg Med Chem; 2017 Sep; 25(17):4595-4613. PubMed ID: 28734664 [TBL] [Abstract][Full Text] [Related]
13. Self-assembled lysozyme/carboxymethylcellulose nanogels for delivery of methotrexate. Li Z; Xu W; Zhang C; Chen Y; Li B Int J Biol Macromol; 2015 Apr; 75():166-72. PubMed ID: 25637692 [TBL] [Abstract][Full Text] [Related]
14. Formation and characterization of β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated Fe3O4 nanoparticles for loading and releasing 5-Fluorouracil drug. Prabha G; Raj V Biomed Pharmacother; 2016 May; 80():173-182. PubMed ID: 27133054 [TBL] [Abstract][Full Text] [Related]
15. Green synthesis of bovine serum albumin/oxidized gum Arabic nanocomposite as pH-responsive carrier for controlled release of piperine and the molecular docking study. Jalali ES; Shojaosadati SA; Hamedi S Int J Biol Macromol; 2023 Jan; 225():51-62. PubMed ID: 36460248 [TBL] [Abstract][Full Text] [Related]
16. Nanogel loaded with surfactant based nanovesicles for enhanced ocular delivery of acetazolamide. Abdel-Rashid RS; Helal DA; Omar MM; El Sisi AM Int J Nanomedicine; 2019; 14():2973-2983. PubMed ID: 31118616 [No Abstract] [Full Text] [Related]
17. Modified gum arabic cross-linked gelatin scaffold for biomedical applications. Sarika PR; Cinthya K; Jayakrishnan A; Anilkumar PR; James NR Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():272-9. PubMed ID: 25175214 [TBL] [Abstract][Full Text] [Related]
18. Genipin-crosslinked O-carboxymethyl chitosan-gum Arabic coacervate as a pH-sensitive delivery system and microstructure characterization. Huang GQ; Cheng LY; Xiao JX; Wang SQ; Han XN J Biomater Appl; 2016 Aug; 31(2):193-204. PubMed ID: 27231264 [TBL] [Abstract][Full Text] [Related]
19. Biocompatible polypeptide nanogel: Effect of surfactants on nanogelation in inverse miniemulsion, in vivo biodistribution and blood clearance evaluation. Oleshchuk D; Šálek P; Dvořáková J; Kučka J; Pavlova E; Francová P; Šefc L; Proks V Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():111865. PubMed ID: 34082926 [TBL] [Abstract][Full Text] [Related]
20. Green-step assembly of low density lipoprotein/sodium carboxymethyl cellulose nanogels for facile loading and pH-dependent release of doxorubicin. He L; Liang H; Lin L; Shah BR; Li Y; Chen Y; Li B Colloids Surf B Biointerfaces; 2015 Feb; 126():288-96. PubMed ID: 25576811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]