These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33359938)

  • 1. Emulsification and emulsion stability: The role of the interfacial properties.
    Ravera F; Dziza K; Santini E; Cristofolini L; Liggieri L
    Adv Colloid Interface Sci; 2021 Feb; 288():102344. PubMed ID: 33359938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple and effective strategy to enhance the stability and solid-liquid interfacial interaction of an emulsion by the interfacial dilational rheological properties.
    Lei J; Gao Y; Hou X; Sheng Z; Zhang C; Du F
    Soft Matter; 2020 Jun; 16(24):5650-5658. PubMed ID: 32514509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relating emulsion stability to interfacial properties for pharmaceutical emulsions stabilized by Pluronic F68 surfactant.
    Powell KC; Damitz R; Chauhan A
    Int J Pharm; 2017 Apr; 521(1-2):8-18. PubMed ID: 28192158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ostwald Ripening Rate of Orange Oil Emulsions: Effects of Molecular Structure of Emulsifiers and Their Oil Composition.
    Jang Y; Park J; Song HY; Choi SJ
    J Food Sci; 2019 Mar; 84(3):440-447. PubMed ID: 30714618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An algorithm for emulsion stability simulations: account of flocculation, coalescence, surfactant adsorption and the process of Ostwald ripening.
    Urbina-Villalba G
    Int J Mol Sci; 2009 Mar; 10(3):761-804. PubMed ID: 19399220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of emulsion interfacial membrane characteristics on Ostwald ripening in a model emulsion.
    Han SW; Song HY; Moon TW; Choi SJ
    Food Chem; 2018 Mar; 242():91-97. PubMed ID: 29037741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of Sodium Dodecyl Sulfate at Water-Dodecane Interface in Relation to the Oil in Water Emulsion Properties.
    Llamas S; Santini E; Liggieri L; Salerni F; Orsi D; Cristofolini L; Ravera F
    Langmuir; 2018 May; 34(21):5978-5989. PubMed ID: 29718671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of Ostwald Ripening in Emulsions via Coarse-Grained Simulations.
    Khedr A; Striolo A
    J Chem Theory Comput; 2019 Sep; 15(9):5058-5068. PubMed ID: 31411875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emulsification mechanism and storage instabilities of hydrocarbon-in-water sub-micron emulsions stabilised with Tweens (20 and 80), Brij 96v and sucrose monoesters.
    Henry JV; Fryer PJ; Frith WJ; Norton IT
    J Colloid Interface Sci; 2009 Oct; 338(1):201-6. PubMed ID: 19589533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing differences between Ostwald ripening and coalescence by rheology, laser diffraction and multiple light scattering.
    Santos J; Calero N; Trujillo-Cayado LA; Garcia MC; Muñoz J
    Colloids Surf B Biointerfaces; 2017 Nov; 159():405-411. PubMed ID: 28822289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards predicting the stability of protein-stabilized emulsions.
    Delahaije RJ; Gruppen H; Giuseppin ML; Wierenga PA
    Adv Colloid Interface Sci; 2015 May; 219():1-9. PubMed ID: 25704489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emulsion stability and dilatational viscoelasticity of ovalbumin/chitosan complexes at the oil-in-water interface.
    Xiong W; Ren C; Tian M; Yang X; Li J; Li B
    Food Chem; 2018 Jun; 252():181-188. PubMed ID: 29478530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymeric-nanofluids stabilized emulsions: Interfacial versus bulk rheology.
    Kamkar M; Bazazi P; Kannan A; Suja VC; Hejazi SH; Fuller GG; Sundararaj U
    J Colloid Interface Sci; 2020 Sep; 576():252-263. PubMed ID: 32422449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of interfacial characteristics on Ostwald ripening in hydrocarbon oil-in-water emulsions.
    Mun S; McClements DJ
    Langmuir; 2006 Feb; 22(4):1551-4. PubMed ID: 16460073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emulsifying properties of soy protein nanoparticles: influence of the protein concentration and/or emulsification process.
    Liu F; Tang CH
    J Agric Food Chem; 2014 Mar; 62(12):2644-54. PubMed ID: 24601531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial and emulsion characterisation of chemically modified polysaccharides through a multiscale approach.
    Wei Y; Xie Y; Cai Z; Guo Y; Wu M; Wang P; Li R; Zhang H
    J Colloid Interface Sci; 2020 Nov; 580():480-492. PubMed ID: 32711199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of interfacial rheological properties on Ostwald ripening in emulsions.
    Meinders MB; van Vliet T
    Adv Colloid Interface Sci; 2004 May; 108-109():119-26. PubMed ID: 15072934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ionic strength on the interfacial viscoelasticity and stability of silk fibroin at the oil/water interface.
    Tang X; Qiao X; Miller R; Sun K
    J Sci Food Agric; 2016 Dec; 96(15):4918-4928. PubMed ID: 27256721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.