These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33359963)

  • 1. Recent developments in emulsion characterization: Diffusing Wave Spectroscopy beyond average values.
    Lorusso V; Orsi D; Salerni F; Liggieri L; Ravera F; McMillin R; Ferri J; Cristofolini L
    Adv Colloid Interface Sci; 2021 Feb; 288():102341. PubMed ID: 33359963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introducing diffusing wave spectroscopy as a process analytical tool for pharmaceutical emulsion manufacturing.
    Reufer M; Machado AHE; Niederquell A; Bohnenblust K; Müller B; Völker AC; Kuentz M
    J Pharm Sci; 2014 Dec; 103(12):3902-3913. PubMed ID: 25302803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A diffusing wave spectroscopy study of pharmaceutical emulsions for physical stability assessment.
    Niederquell A; Machado AHE; Kuentz M
    Int J Pharm; 2017 Sep; 530(1-2):213-223. PubMed ID: 28720536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microrheology of novel cellulose stabilized oil-in-water emulsions.
    Medronho B; Filipe A; Costa C; Romano A; Lindman B; Edlund H; Norgren M
    J Colloid Interface Sci; 2018 Dec; 531():225-232. PubMed ID: 30032009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusing wave microrheology of highly scattering concentrated monodisperse emulsions.
    Kim HS; Şenbil N; Zhang C; Scheffold F; Mason TG
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7766-7771. PubMed ID: 30923111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Application of Diffusing-Wave Spectroscopy to Monitor the Phase Behavior of Emulsion-Polysaccharide Systems.
    ten Grotenhuis E ; Paques M; van Aken GA
    J Colloid Interface Sci; 2000 Jul; 227(2):495-504. PubMed ID: 10873338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring of flocculation and creaming of sodium-caseinate-stabilized emulsions using diffusing-wave spectroscopy.
    Hemar Y; Pinder DN; Hunter RJ; Singh H; Hébraud P; Horne DS
    J Colloid Interface Sci; 2003 Aug; 264(2):502-8. PubMed ID: 16256671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A diffusing wave spectroscopy study of the dynamics of interactions between high methoxyl pectin and sodium caseinate emulsions during acidification.
    Liu J; Corredig M; Alexander M
    Colloids Surf B Biointerfaces; 2007 Oct; 59(2):164-70. PubMed ID: 17574395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusing-wave spectroscopy in a standard dynamic light scattering setup.
    Fahimi Z; Aangenendt FJ; Voudouris P; Mattsson J; Wyss HM
    Phys Rev E; 2017 Dec; 96(6-1):062611. PubMed ID: 29347446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose-stabilized oil-in-water emulsions: Structural features, microrheology, and stability.
    Costa C; Rosa P; Filipe A; Medronho B; Romano A; Liberman L; Talmon Y; Norgren M
    Carbohydr Polym; 2021 Jan; 252():117092. PubMed ID: 33183583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral Properties of Foams and Emulsions.
    Dinache A; Pascu ML; Smarandache A
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transitions in structure in oil-in-water emulsions as studied by diffusing wave spectroscopy.
    Ruis HG; van Gruijthuijsen K; Venema P; van der Linden E
    Langmuir; 2007 Jan; 23(3):1007-13. PubMed ID: 17241006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusing wave microrheology of strongly attractive dense emulsions.
    Xu Y; Scheffold F; Mason TG
    Phys Rev E; 2020 Dec; 102(6-1):062610. PubMed ID: 33466019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase transitions in polymorphic materials probed using space-resolved diffusing wave spectroscopy.
    Nagazi MY; Dieudonné-George P; Brambilla G; Meunier G; Cipelletti L
    Soft Matter; 2018 Aug; 14(31):6439-6448. PubMed ID: 30027189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of small molecule surfactant structure on the stability of water-in-lubricating oil emulsions.
    McMillin RE; Nowaczyk J; Centofanti K; Bragg J; Tansi BM; Remias JE; Ferri JK
    J Colloid Interface Sci; 2023 Dec; 652(Pt A):825-835. PubMed ID: 37619261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusing Wave Microrheology in Polymeric Fluids.
    Phillies GDJ
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relating emulsion stability to interfacial properties for pharmaceutical emulsions stabilized by Pluronic F68 surfactant.
    Powell KC; Damitz R; Chauhan A
    Int J Pharm; 2017 Apr; 521(1-2):8-18. PubMed ID: 28192158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheological investigations on the creaming of depletion-flocculated emulsions.
    Aben S; Holtze C; Tadros T; Schurtenberger P
    Langmuir; 2012 May; 28(21):7967-75. PubMed ID: 22554128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single bubble and drop techniques for characterizing foams and emulsions.
    Chandran Suja V; Rodríguez-Hakim M; Tajuelo J; Fuller GG
    Adv Colloid Interface Sci; 2020 Dec; 286():102295. PubMed ID: 33161297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.