These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 33360003)

  • 1. 2G waste lignin to fuel and high value-added chemicals: Approaches, challenges and future outlook for sustainable development.
    Sivagurunathan P; Raj T; Mohanta CS; Semwal S; Satlewal A; Gupta RP; Puri SK; Ramakumar SSV; Kumar R
    Chemosphere; 2021 Apr; 268():129326. PubMed ID: 33360003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Added-Value Chemicals from Lignin Oxidation.
    Costa CAE; Vega-Aguilar CA; Rodrigues AE
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lignin Hydrogenolysis: Improving Lignin Disassembly through Formaldehyde Stabilization.
    Kärkäs MD
    ChemSusChem; 2017 May; 10(10):2111-2115. PubMed ID: 28394095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in the Catalytic Depolymerization of Lignin towards Phenolic Chemicals: A Review.
    Liu X; Bouxin FP; Fan J; Budarin VL; Hu C; Clark JH
    ChemSusChem; 2020 Sep; 13(17):4296-4317. PubMed ID: 32662564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancing Lignocellulosic Biomass Fractionation through Molten Salt Hydrates: Catalyst-Enhanced Pretreatment for Sustainable Biorefineries.
    Paiva MF; Sadula S; Vlachos D; Wojcieszak R; Vanhove G; Noronha FB
    ChemSusChem; 2024 Jun; ():e202400396. PubMed ID: 38872421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals.
    Den W; Sharma VK; Lee M; Nadadur G; Varma RS
    Front Chem; 2018; 6():141. PubMed ID: 29755972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transforming biorefinery designs with 'Plug-In Processes of Lignin' to enable economic waste valorization.
    Liu ZH; Hao N; Wang YY; Dou C; Lin F; Shen R; Bura R; Hodge DB; Dale BE; Ragauskas AJ; Yang B; Yuan JS
    Nat Commun; 2021 Jun; 12(1):3912. PubMed ID: 34162838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward engineering
    Wu W; Liu F; Singh S
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):2970-2975. PubMed ID: 29500185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The isolation of lignin with native-like structure.
    Wang Z; Deuss PJ
    Biotechnol Adv; 2023 Nov; 68():108230. PubMed ID: 37558187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of 'Lignin-First' Approaches for the Valorization of Lignocellulosic Biomass.
    Korányi TI; Fridrich B; Pineda A; Barta K
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32570887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial Valorization of Lignin: Strains, Enzymes, Conversion Pathways, Biosensors, and Perspectives.
    Lee S; Kang M; Bae JH; Sohn JH; Sung BH
    Front Bioeng Biotechnol; 2019; 7():209. PubMed ID: 31552235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Renewable Polymer Production from Lignin-Derived Aldehydes.
    Lee N; Kim YT; Lee J
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33498847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspective on Lignin Conversion Strategies That Enable Next Generation Biorefineries.
    Shrestha S; Goswami S; Banerjee D; Garcia V; Zhou E; Olmsted CN; Majumder EL; Kumar D; Awasthi D; Mukhopadhyay A; Singer SW; Gladden JM; Simmons BA; Choudhary H
    ChemSusChem; 2024 Apr; ():e202301460. PubMed ID: 38669480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current Status and Challenges for Metal-Organic-Framework-Assisted Conversion of Biomass into Value-Added Chemicals.
    Srivastava V; Lappalainen K; Rusanen A; Morales G; Lassi U
    Chempluschem; 2023 Nov; 88(11):e202300309. PubMed ID: 37779099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoreforming for Lignin Upgrading: A Critical Review.
    Cheng X; Palma B; Zhao H; Zhang H; Wang J; Chen Z; Hu J
    ChemSusChem; 2023 Dec; 16(23):e202300675. PubMed ID: 37455297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Waste to Value: Recent Insights into Producing Vanillin from Lignin.
    D'Arrigo P; Rossato LAM; Strini A; Serra S
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of lignin-based hydrogels, their properties and applications.
    Mondal AK; Uddin MT; Sujan SMA; Tang Z; Alemu D; Begum HA; Li J; Huang F; Ni Y
    Int J Biol Macromol; 2023 Aug; 245():125580. PubMed ID: 37379941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a genetically programed vanillin-sensing bacterium for high-throughput screening of lignin-degrading enzyme libraries.
    Sana B; Chia KHB; Raghavan SS; Ramalingam B; Nagarajan N; Seayad J; Ghadessy FJ
    Biotechnol Biofuels; 2017; 10():32. PubMed ID: 28174601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin valorization meets synthetic biology.
    Zhang R; Zhao CH; Chang HC; Chai MZ; Li BZ; Yuan YJ
    Eng Life Sci; 2019 Jun; 19(6):463-470. PubMed ID: 32625023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling lignin biosynthesis: a pathway to renewable chemicals.
    Rao X; Barros J
    Trends Plant Sci; 2024 May; 29(5):546-559. PubMed ID: 37802691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.