These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Microfluidic Separation of Circulating Tumor Cells Based on Size and Deformability. Park ES; Duffy SP; Ma H Methods Mol Biol; 2017; 1634():21-32. PubMed ID: 28819838 [TBL] [Abstract][Full Text] [Related]
23. Microfluidics and circulating tumor cells. Dong Y; Skelley AM; Merdek KD; Sprott KM; Jiang C; Pierceall WE; Lin J; Stocum M; Carney WP; Smirnov DA J Mol Diagn; 2013 Mar; 15(2):149-57. PubMed ID: 23266318 [TBL] [Abstract][Full Text] [Related]
24. Sorting Technology for Circulating Tumor Cells Based on Microfluidics. Hu D; Liu H; Tian Y; Li Z; Cui X ACS Comb Sci; 2020 Dec; 22(12):701-711. PubMed ID: 33052651 [TBL] [Abstract][Full Text] [Related]
25. Simultaneous on-chip isolation and characterization of circulating tumor cell sub-populations. Lee J; Kwak B Biosens Bioelectron; 2020 Nov; 168():112564. PubMed ID: 32892118 [TBL] [Abstract][Full Text] [Related]
26. An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells. Warkiani ME; Khoo BL; Tan DS; Bhagat AA; Lim WT; Yap YS; Lee SC; Soo RA; Han J; Lim CT Analyst; 2014 Jul; 139(13):3245-55. PubMed ID: 24840240 [TBL] [Abstract][Full Text] [Related]
27. Separation detection of different circulating tumor cells in the blood using an electrochemical microfluidic channel modified with a lipid-bonded conducting polymer. Gurudatt NG; Chung S; Kim JM; Kim MH; Jung DK; Han JY; Shim YB Biosens Bioelectron; 2019 Dec; 146():111746. PubMed ID: 31586761 [TBL] [Abstract][Full Text] [Related]
28. Optofluidic real-time cell sorter for longitudinal CTC studies in mouse models of cancer. Hamza B; Ng SR; Prakadan SM; Delgado FF; Chin CR; King EM; Yang LF; Davidson SM; DeGouveia KL; Cermak N; Navia AW; Winter PS; Drake RS; Tammela T; Li CM; Papagiannakopoulos T; Gupta AJ; Shaw Bagnall J; Knudsen SM; Vander Heiden MG; Wasserman SC; Jacks T; Shalek AK; Manalis SR Proc Natl Acad Sci U S A; 2019 Feb; 116(6):2232-2236. PubMed ID: 30674677 [TBL] [Abstract][Full Text] [Related]
29. Development of a microfluidic-based optical sensing device for label-free detection of circulating tumor cells (CTCs) through their lactic acid metabolism. Chiu TK; Lei KF; Hsieh CH; Hsiao HB; Wang HM; Wu MH Sensors (Basel); 2015 Mar; 15(3):6789-806. PubMed ID: 25808775 [TBL] [Abstract][Full Text] [Related]
30. Microfluidic devices to enrich and isolate circulating tumor cells. Myung JH; Hong S Lab Chip; 2015 Dec; 15(24):4500-11. PubMed ID: 26549749 [TBL] [Abstract][Full Text] [Related]
31. Application of Microfluidics in Detection of Circulating Tumor Cells. Li C; He W; Wang N; Xi Z; Deng R; Liu X; Kang R; Xie L; Liu X Front Bioeng Biotechnol; 2022; 10():907232. PubMed ID: 35646880 [TBL] [Abstract][Full Text] [Related]
32. Spiral shape microfluidic channel for selective isolating of heterogenic circulating tumor cells. Kwak B; Lee J; Lee J; Kim HS; Kang S; Lee Y Biosens Bioelectron; 2018 Mar; 101():311-316. PubMed ID: 29055574 [TBL] [Abstract][Full Text] [Related]
33. Wedge-shaped microfluidic chip for circulating tumor cells isolation and its clinical significance in gastric cancer. Yang C; Zhang N; Wang S; Shi D; Zhang C; Liu K; Xiong B J Transl Med; 2018 May; 16(1):139. PubMed ID: 29792200 [TBL] [Abstract][Full Text] [Related]
34. Circulating Tumor Cells: A New Window for Diagnosis and Evaluation of Cancer. Liu M; Tang M; Li M; Gao F; Shi C; Hou J; Zeng W Anticancer Agents Med Chem; 2016; 16(12):1529-1540. PubMed ID: 26902602 [TBL] [Abstract][Full Text] [Related]
35. Microscale Laminar Vortices for High-Purity Extraction and Release of Circulating Tumor Cells. Hur SC; Che J; Di Carlo D Methods Mol Biol; 2017; 1634():65-79. PubMed ID: 28819841 [TBL] [Abstract][Full Text] [Related]
36. Integration of biomimicry and nanotechnology for significantly improved detection of circulating tumor cells (CTCs). Myung JH; Park SJ; Wang AZ; Hong S Adv Drug Deliv Rev; 2018 Feb; 125():36-47. PubMed ID: 29247765 [TBL] [Abstract][Full Text] [Related]
37. Combined microfluidic enrichment and staining workflow for single-cell analysis of circulating tumor cells in metastatic prostate cancer patients. Løppke C; Jørgensen AM; Sand NT; Klitgaard RB; Daugaard G; Agerbæk MØ Sci Rep; 2024 Jul; 14(1):17501. PubMed ID: 39080445 [TBL] [Abstract][Full Text] [Related]
38. Creating a capture zone in microfluidic flow greatly enhances the throughput and efficiency of cancer detection. Sun M; Xu J; Shamul JG; Lu X; Husain S; He X Biomaterials; 2019 Mar; 197():161-170. PubMed ID: 30660052 [TBL] [Abstract][Full Text] [Related]
39. Aptamer-Based Methods for Detection of Circulating Tumor Cells and Their Potential for Personalized Diagnostics. Zamay AS; Zamay GS; Kolovskaya OS; Zamay TN; Berezovski MV Adv Exp Med Biol; 2017; 994():67-81. PubMed ID: 28560668 [TBL] [Abstract][Full Text] [Related]
40. Semi-automatic PD-L1 Characterization and Enumeration of Circulating Tumor Cells from Non-small Cell Lung Cancer Patients by Immunofluorescence. Garcia J; Barthelemy D; Geiguer F; Ballandier J; Li KW; Aurel JP; Le Breton F; Rodriguez-Lafrasse C; Manship B; Couraud S; Payen L J Vis Exp; 2019 Aug; (150):. PubMed ID: 31475991 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]