These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

577 related articles for article (PubMed ID: 33360148)

  • 1. Integrating multi-omics data for crop improvement.
    Scossa F; Alseekh S; Fernie AR
    J Plant Physiol; 2021 Feb; 257():153352. PubMed ID: 33360148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomics-based strategies for the use of natural variation in the improvement of crop metabolism.
    Scossa F; Brotman Y; de Abreu E Lima F; Willmitzer L; Nikoloski Z; Tohge T; Fernie AR
    Plant Sci; 2016 Jan; 242():47-64. PubMed ID: 26566824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops.
    Li T; Wang YH; Liu JX; Feng K; Xu ZS; Xiong AS
    Crit Rev Biotechnol; 2019 Aug; 39(5):680-692. PubMed ID: 31068014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic innovation for crop improvement.
    Bevan MW; Uauy C; Wulff BB; Zhou J; Krasileva K; Clark MD
    Nature; 2017 Mar; 543(7645):346-354. PubMed ID: 28300107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational genomics and multi-omics integrated approaches as a useful strategy for crop breeding.
    Choi HK
    Genes Genomics; 2019 Feb; 41(2):133-146. PubMed ID: 30353370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding.
    Mascher M; Schreiber M; Scholz U; Graner A; Reif JC; Stein N
    Nat Genet; 2019 Jul; 51(7):1076-1081. PubMed ID: 31253974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding and utilizing crop genome diversity via high-resolution genotyping.
    Voss-Fels K; Snowdon RJ
    Plant Biotechnol J; 2016 Apr; 14(4):1086-94. PubMed ID: 27003869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomics of crop wild relatives: expanding the gene pool for crop improvement.
    Brozynska M; Furtado A; Henry RJ
    Plant Biotechnol J; 2016 Apr; 14(4):1070-85. PubMed ID: 26311018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning approaches for crop improvement: Leveraging phenotypic and genotypic big data.
    Tong H; Nikoloski Z
    J Plant Physiol; 2021 Feb; 257():153354. PubMed ID: 33385619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective.
    Muthamilarasan M; Singh NK; Prasad M
    Adv Genet; 2019; 103():1-38. PubMed ID: 30904092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolomics technology and its applications in agricultural animal and plant research.
    Tian J; Wang YZ; Yan SX; Sun S; Jia JJ; Hu XX
    Yi Chuan; 2020 May; 42(5):452-465. PubMed ID: 32431297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolome variability in crop plant species--when, where, how much and so what?
    Davies HV; Shepherd LV; Stewart D; Frank T; Röhlig RM; Engel KH
    Regul Toxicol Pharmacol; 2010 Dec; 58(3 Suppl):S54-61. PubMed ID: 20627114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast-forward breeding for a food-secure world.
    Varshney RK; Bohra A; Roorkiwal M; Barmukh R; Cowling WA; Chitikineni A; Lam HM; Hickey LT; Croser JS; Bayer PE; Edwards D; Crossa J; Weckwerth W; Millar H; Kumar A; Bevan MW; Siddique KHM
    Trends Genet; 2021 Dec; 37(12):1124-1136. PubMed ID: 34531040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress, challenges and the future of crop genomes.
    Michael TP; VanBuren R
    Curr Opin Plant Biol; 2015 Apr; 24():71-81. PubMed ID: 25703261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Horizons for Dissecting Epistasis in Crop Quantitative Trait Variation.
    Soyk S; Benoit M; Lippman ZB
    Annu Rev Genet; 2020 Nov; 54():287-307. PubMed ID: 32870731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of OMICS Technologies for Crop Improvement.
    Faryad A; Aziz F; Tahir J; Kousar M; Qasim M; Shamim A
    Protein Pept Lett; 2021; 28(8):896-908. PubMed ID: 33745421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement.
    Liu J; Fernie AR; Yan J
    Plant Commun; 2020 Jan; 1(1):100010. PubMed ID: 33404535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.
    Kujur A; Saxena MS; Bajaj D; Laxmi ; Parida SK
    J Biosci; 2013 Dec; 38(5):971-87. PubMed ID: 24296899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants.
    Raza A
    Plant Cell Rep; 2022 Mar; 41(3):741-763. PubMed ID: 33251564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translational genomics for plant breeding with the genome sequence explosion.
    Kang YJ; Lee T; Lee J; Shim S; Jeong H; Satyawan D; Kim MY; Lee SH
    Plant Biotechnol J; 2016 Apr; 14(4):1057-69. PubMed ID: 26269219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.