These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 33360418)
1. Identifying remedial solutions through optimal bioremediation design under real-world field conditions. Verardo E; Atteia O; Rouvreau L; Siade A; Prommer H J Contam Hydrol; 2021 Feb; 237():103751. PubMed ID: 33360418 [TBL] [Abstract][Full Text] [Related]
2. Sustainability assessment of electrokinetic bioremediation compared with alternative remediation options for a petroleum release site. Gill RT; Thornton SF; Harbottle MJ; Smith JW J Environ Manage; 2016 Dec; 184(Pt 1):120-131. PubMed ID: 27511828 [TBL] [Abstract][Full Text] [Related]
3. Optimal design of an in-situ bioremediation system using support vector machine and particle swarm optimization. ch S; Kumar D; Prasad RK; Mathur S J Contam Hydrol; 2013 Aug; 151():105-16. PubMed ID: 23771102 [TBL] [Abstract][Full Text] [Related]
4. An integrated simulation, inference, and optimization method for identifying groundwater remediation strategies at petroleum-contaminated aquifers in western Canada. He L; Huang GH; Zeng GM; Lu HW Water Res; 2008 May; 42(10-11):2629-39. PubMed ID: 18308365 [TBL] [Abstract][Full Text] [Related]
5. Surfactant flooding makes a comeback: Results of a full-scale, field implementation to recover mobilized NAPL. Sharma P; Kostarelos K; Lenschow S; Christensen A; de Blanc PC J Contam Hydrol; 2020 Mar; 230():103602. PubMed ID: 32005455 [TBL] [Abstract][Full Text] [Related]
6. A coupled simulation-optimization approach for groundwater remediation design under uncertainty: an application to a petroleum-contaminated site. He L; Huang GH; Lu HW Environ Pollut; 2009; 157(8-9):2485-92. PubMed ID: 19359077 [TBL] [Abstract][Full Text] [Related]
7. In situ bioremediation of groundwater contaminated with petroleum constituents using oxygen release compounds (ORCs). Kunukcu YK J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jun; 42(7):839-45. PubMed ID: 17558763 [TBL] [Abstract][Full Text] [Related]
8. Increasing Madison AS; Sorsby SJ; Wang Y; Key TA Front Microbiol; 2022; 13():1005871. PubMed ID: 36845972 [TBL] [Abstract][Full Text] [Related]
9. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater. Mateas DJ; Tick GR; Carroll KC J Contam Hydrol; 2017 Sep; 204():40-56. PubMed ID: 28780996 [TBL] [Abstract][Full Text] [Related]
10. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ. Piscopo AN; Neupauer RM; Kasprzyk JR J Contam Hydrol; 2016 Jul; 190():29-43. PubMed ID: 27153361 [TBL] [Abstract][Full Text] [Related]
11. Source Characterization of Multiple Reactive Species at an Abandoned Mine Site Using a Groundwater Numerical Simulation Model and Optimization Models. Hayford MS; Datta B Int J Environ Res Public Health; 2021 Apr; 18(9):. PubMed ID: 33947139 [TBL] [Abstract][Full Text] [Related]
12. Emulsified polycolloid substrate biobarrier for benzene and petroleum-hydrocarbon plume containment and migration control - A field-scale study. Lee TH; Cao WZ; Tsang DCW; Sheu YT; Shia KF; Kao CM Sci Total Environ; 2019 May; 666():839-848. PubMed ID: 30818208 [TBL] [Abstract][Full Text] [Related]
13. The effect of fuel alcohol on monoaromatic hydrocarbon biodegradation and natural attenuation. Alvarez PJ; Hunt CS Rev Latinoam Microbiol; 2002; 44(2):83-104. PubMed ID: 17063777 [TBL] [Abstract][Full Text] [Related]
14. An overview of in situ remediation for groundwater co-contaminated with heavy metals and petroleum hydrocarbons. Yuan L; Wang K; Zhao Q; Yang L; Wang G; Jiang M; Li L J Environ Manage; 2024 Jan; 349():119342. PubMed ID: 37890298 [TBL] [Abstract][Full Text] [Related]
15. In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system. Liang SH; Kao CM; Kuo YC; Chen KF; Yang BM Water Res; 2011 Apr; 45(8):2496-506. PubMed ID: 21396673 [TBL] [Abstract][Full Text] [Related]
16. Cumene Contamination in Groundwater: Observed Concentrations, Evaluation of Remediation by Sulfate Enhanced Bioremediation (SEB), and Public Health Issues. Herman JP; Redfern L; Teaf C; Covert D; Michael PR; Missimer TM Int J Environ Res Public Health; 2020 Nov; 17(22):. PubMed ID: 33198342 [TBL] [Abstract][Full Text] [Related]
17. Optimization-based multicriteria decision analysis for identification of desired petroleum-contaminated groundwater remediation strategies. Lu H; Feng M; He L; Ren L Environ Sci Pollut Res Int; 2015 Jun; 22(12):9505-14. PubMed ID: 25613797 [TBL] [Abstract][Full Text] [Related]
18. Biodiesel presence in the source zone hinders aromatic hydrocarbons attenuation in a B20-contaminated groundwater. Ramos DT; Lazzarin HSC; Alvarez PJJ; Vogel TM; Fernandes M; do Rosário M; Corseuil HX J Contam Hydrol; 2016 Oct; 193():48-53. PubMed ID: 27636988 [TBL] [Abstract][Full Text] [Related]
19. A mass balance approach to investigate arsenic cycling in a petroleum plume. Ziegler BA; Schreiber ME; Cozzarelli IM; Crystal Ng GH Environ Pollut; 2017 Dec; 231(Pt 2):1351-1361. PubMed ID: 28943347 [TBL] [Abstract][Full Text] [Related]
20. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds. Chong AD; Mayer KU J Contam Hydrol; 2017 Sep; 204():1-10. PubMed ID: 28830695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]