These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33360605)

  • 21. Spatial analysis of childhood cancer: a case/control study.
    Ramis R; Gómez-Barroso D; Tamayo I; García-Pérez J; Morales A; Pardo Romaguera E; López-Abente G
    PLoS One; 2015; 10(5):e0127273. PubMed ID: 25992892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The geographic distribution of un-immunized children in Ontario, Canada: Hotspot detection using Bayesian spatial analysis.
    Wilson SE; Bunko A; Johnson S; Murray J; Wang Y; Deeks SL; Crowcroft NS; Friedman L; Loh LC; MacLeod M; Taylor C; Li Y
    Vaccine; 2021 Feb; 39(8):1349-1357. PubMed ID: 33518467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detecting multiple spatial disease clusters: information criterion and scan statistic approach.
    Takahashi K; Shimadzu H
    Int J Health Geogr; 2020 Sep; 19(1):33. PubMed ID: 32878638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial clustering of myelodysplastic syndromes (MDS) in the Seattle-Puget Sound region of Washington State.
    Ross ME; Wakefield J; Davis S; De Roos AJ
    Cancer Causes Control; 2010 Jun; 21(6):829-38. PubMed ID: 20101455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Geographical variations of cancer incidence in Guadeloupe, French West Indies.
    Bhakkan-Mambir B; Deloumeaux J; Luce D
    BMC Cancer; 2022 Jul; 22(1):783. PubMed ID: 35843938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial distribution and determinants of thyroid cancer incidence from 1999 to 2013 in Korea.
    Jang J; Yoo DS; Chun BC
    Sci Rep; 2021 Nov; 11(1):22474. PubMed ID: 34795315
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Analysis on impact of meteorological factors on incidence of hand, foot and mouth disease based on Bayes spatial-temporal theory].
    Wang C; Fang L; Cao W; Zhang Y; Cao K; Xu Q; Guo X
    Zhonghua Liu Xing Bing Xue Za Zhi; 2015 May; 36(5):476-80. PubMed ID: 26080637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bayesian Spatial Joint Model for Disease Mapping of Zero-Inflated Data with R-INLA: A Simulation Study and an Application to Male Breast Cancer in Iran.
    Asmarian N; Ayatollahi SMT; Sharafi Z; Zare N
    Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31766251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Statistical power of disease cluster and clustering tests for rare diseases: a simulation study of point sources.
    Schmiedel S; Blettner M; Schüz J
    Spat Spatiotemporal Epidemiol; 2012 Sep; 3(3):235-42. PubMed ID: 22749209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Geographical patterns of the incidence and mortality of colorectal cancer in mainland Portugal municipalities (2007-2011).
    Roquette R; Painho M; Nunes B
    BMC Cancer; 2019 May; 19(1):512. PubMed ID: 31142284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Descriptive spatial analysis of BSE in western France.
    Abrial D; Calavas D; Lauvergne N; Morignat E; Ducrot C
    Vet Res; 2003; 34(6):749-60. PubMed ID: 14746770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Examining the impact of the number of regions used in cluster detection methods: An application to childhood asthma visits to a hospital in Manitoba, Canada.
    Torabi M; Galloway K
    Geospat Health; 2018 Nov; 13(2):. PubMed ID: 30451469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cluster detection of spatial regression coefficients.
    Lee J; Gangnon RE; Zhu J
    Stat Med; 2017 Mar; 36(7):1118-1133. PubMed ID: 27878838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bayesian hierarchical spatial models: Implementing the Besag York Mollié model in stan.
    Morris M; Wheeler-Martin K; Simpson D; Mooney SJ; Gelman A; DiMaggio C
    Spat Spatiotemporal Epidemiol; 2019 Nov; 31():100301. PubMed ID: 31677766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluating the informativeness of the Besag-York-Mollié CAR model.
    Quick H; Song G; Tabb LP
    Spat Spatiotemporal Epidemiol; 2021 Jun; 37():100420. PubMed ID: 33980402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of clusters of a rare disease over a large territory: performance of cluster detection methods.
    Goujon-Bellec S; Demoury C; Guyot-Goubin A; Hémon D; Clavel J
    Int J Health Geogr; 2011 Oct; 10():53. PubMed ID: 21970516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clustering of childhood cancer in the inner city of Tehran metropolitan area: a GIS-based analysis.
    Mosavi-Jarrahi A; Moini M; Mohagheghi MA; Alebouyeh M; Yazdizadeh B; Shahabian A; Nahvijo A; Alizadeh R
    Int J Hyg Environ Health; 2007 Mar; 210(2):113-9. PubMed ID: 17008129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A procedure to characterize geographic distributions of rare disorders in cohorts.
    Van Meter KC; Christiansen LE; Hertz-Picciotto I; Azari R; Carpenter TE
    Int J Health Geogr; 2008 May; 7():26. PubMed ID: 18507863
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epidemiologic mapping of Florida childhood cancer clusters.
    Amin R; Bohnert A; Holmes L; Rajasekaran A; Assanasen C
    Pediatr Blood Cancer; 2010 Apr; 54(4):511-8. PubMed ID: 20054842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of scale on tests for disease clustering.
    Waller LA; Turnbull BW
    Stat Med; 1993 Oct; 12(19-20):1869-84. PubMed ID: 8272667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.