These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33360605)

  • 41. Real time spatial cluster detection using interpoint distances among precise patient locations.
    Olson KL; Bonetti M; Pagano M; Mandl KD
    BMC Med Inform Decis Mak; 2005 Jun; 5():19. PubMed ID: 15969749
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Clustering of non-leukemia childhood cancer in Colombia: a nationwide study.
    Manrique-Hernández EF; Rojas Díaz MP; Rodriguez-Villamizar LA
    F1000Res; 2021; 10():86. PubMed ID: 34249334
    [No Abstract]   [Full Text] [Related]  

  • 43. Spatial clustering of childhood leukaemia with the integration of the Paediatric Environmental History.
    Cárceles-Álvarez A; Ortega-García JA; López-Hernández FA; Orozco-Llamas M; Espinosa-López B; Tobarra-Sánchez E; Alvarez L
    Environ Res; 2017 Jul; 156():605-612. PubMed ID: 28454012
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spatial variations of childhood acute leukaemia in France, 1990-2006: global spatial heterogeneity and cluster detection at 'living-zone' level.
    Demoury C; Goujon-Bellec S; Guyot-Goubin A; Hémon D; Clavel J
    Eur J Cancer Prev; 2012 Jul; 21(4):367-74. PubMed ID: 22108445
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A spatial scan statistic for multiple clusters.
    Li XZ; Wang JF; Yang WZ; Li ZJ; Lai SJ
    Math Biosci; 2011 Oct; 233(2):135-42. PubMed ID: 21827771
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spatial and temporal variations of childhood cancers: Literature review and contribution of the French national registry.
    Goujon S; Kyrimi E; Faure L; Guissou S; Hémon D; Lacour B; Clavel J
    Cancer Med; 2018 Oct; 7(10):5299-5314. PubMed ID: 30230715
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Geostatistical analysis of disease data: visualization and propagation of spatial uncertainty in cancer mortality risk using Poisson kriging and p-field simulation.
    Goovaerts P
    Int J Health Geogr; 2006 Feb; 5():7. PubMed ID: 16469095
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Detection of spatial disease clusters with LISA functions.
    Moraga P; Montes F
    Stat Med; 2011 May; 30(10):1057-71. PubMed ID: 21484847
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bayesian spatial modelling of childhood cancer incidence in Switzerland using exact point data: a nationwide study during 1985-2015.
    Konstantinoudis G; Schuhmacher D; Ammann RA; Diesch T; Kuehni CE; Spycher BD; ;
    Int J Health Geogr; 2020 Apr; 19(1):15. PubMed ID: 32303231
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Area-to-Area Poisson Kriging and Spatial Bayesian Analysis in Mapping of Gastric Cancer Incidence in Iran.
    Asmarian N; Jafari-Koshki T; Soleimani A; Taghi Ayatollahi SM
    Asian Pac J Cancer Prev; 2016 Oct; 17(10):4587-4590. PubMed ID: 27892667
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatial clustering of childhood cancers in Switzerland: a nationwide study.
    Konstantinoudis G; Kreis C; Ammann RA; Niggli F; Kuehni CE; Spycher BD; ;
    Cancer Causes Control; 2018 Mar; 29(3):353-362. PubMed ID: 29442212
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Subtyping of children with developmental dyslexia via bootstrap aggregated clustering and the gap statistic: comparison with the double-deficit hypothesis.
    King WM; Giess SA; Lombardino LJ
    Int J Lang Commun Disord; 2007; 42(1):77-95. PubMed ID: 17365087
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stepwise and stagewise approaches for spatial cluster detection.
    Xu J; Gangnon RE
    Spat Spatiotemporal Epidemiol; 2016 May; 17():59-74. PubMed ID: 27246273
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatiotemporal analysis of historical records (2001-2012) on dengue fever in Vietnam and development of a statistical model for forecasting risk.
    Bett B; Grace D; Lee HS; Lindahl J; Nguyen-Viet H; Phuc PD; Quyen NH; Tu TA; Phu TD; Tan DQ; Nam VS
    PLoS One; 2019; 14(11):e0224353. PubMed ID: 31774823
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Disease mapping models: an empirical evaluation. Disease Mapping Collaborative Group.
    Lawson AB; Biggeri AB; Boehning D; Lesaffre E; Viel JF; Clark A; Schlattmann P; Divino F
    Stat Med; 2000 Sep 15-30; 19(17-18):2217-41. PubMed ID: 10960849
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spatial clustering of endemic Burkitt's lymphoma in high-risk regions of Kenya.
    Rainey JJ; Omenah D; Sumba PO; Moormann AM; Rochford R; Wilson ML
    Int J Cancer; 2007 Jan; 120(1):121-7. PubMed ID: 17019706
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatial clustering and local risk of leprosy in São Paulo, Brazil.
    Ramos AC; Yamamura M; Arroyo LH; Popolin MP; Chiaravalloti Neto F; Palha PF; Uchoa SA; Pieri FM; Pinto IC; Fiorati RC; de Queiroz AAR; Belchior AS; Dos Santos DT; Garcia MC; Crispim JA; Alves LS; Berra TZ; Arcêncio RA
    PLoS Negl Trop Dis; 2017 Feb; 11(2):e0005381. PubMed ID: 28241038
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Local multiplicity adjustments for spatial cluster detection.
    Gangnon RE
    Environ Ecol Stat; 2010; 17(1):55-71. PubMed ID: 20485455
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spatiotemporal Analysis of Influenza in China, 2005-2018.
    Zhang Y; Wang X; Li Y; Ma J
    Sci Rep; 2019 Dec; 9(1):19650. PubMed ID: 31873144
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A flexibly shaped spatial scan statistic for detecting clusters.
    Tango T; Takahashi K
    Int J Health Geogr; 2005 May; 4():11. PubMed ID: 15904524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.