These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 33360662)
1. Energy and environmental applications of Sn Nagappagari LR; Lee J; Lee H; Jeong B; Lee K Environ Pollut; 2021 Feb; 271():116318. PubMed ID: 33360662 [TBL] [Abstract][Full Text] [Related]
2. Fe Ma J; Wang Q; Li L; Zong X; Sun H; Tao R; Fan X J Colloid Interface Sci; 2021 Nov; 602():32-42. PubMed ID: 34118603 [TBL] [Abstract][Full Text] [Related]
3. Enhancing photoelectrochemical performance and stability of Ti-doped hematite photoanode via pentanuclear Co-based MOF modification. Dong G; Xie F; Kou F; Chen T; Xiao C; Du S; Liang J; Lou C; Zhuang J Front Chem; 2024; 12():1454524. PubMed ID: 39281034 [TBL] [Abstract][Full Text] [Related]
4. Interface Engineering of CoFe-LDH Modified Ti: α-Fe Chang Y; Han M; Ding Y; Wei H; Zhang D; Luo H; Li X; Yan X Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764609 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous Enhancement of Charge Separation and Hole Transportation in a W:α-Fe Masoumi Z; Tayebi M; Kolaei M; Tayyebi A; Ryu H; Jang JI; Lee BK ACS Appl Mater Interfaces; 2021 Aug; 13(33):39215-39229. PubMed ID: 34374510 [TBL] [Abstract][Full Text] [Related]
6. Engineered Sn- and Mg-doped hematite photoanodes for efficient photoelectrochemical water oxidation. Cai J; Chen H; Liu C; Yin S; Li H; Xu L; Liu H; Xie Q Dalton Trans; 2020 Aug; 49(32):11282-11289. PubMed ID: 32760974 [TBL] [Abstract][Full Text] [Related]
7. Regulating Sn self-doping and boosting solar water splitting performance of hematite nanorod arrays grown on fluorine-doped tin oxide via low-level Hf doping. Ma H; Chen W; Fan Q; Ye C; Zheng M; Wang J J Colloid Interface Sci; 2022 Nov; 625():585-595. PubMed ID: 35751984 [TBL] [Abstract][Full Text] [Related]
8. Dual Modification Strategy: Passivation Layer and Cocatalyst on Hematite for Improved Photoelectrochemical Water Oxidation. Zhi Y; Leng X; Wang D; Xu L ACS Appl Mater Interfaces; 2024 Oct; 16(40):54058-54066. PubMed ID: 39349386 [TBL] [Abstract][Full Text] [Related]
9. NiFe-LDH-Decorated Ti-Doped Hematite Photoanode for Enhancing Solar Water-Splitting Efficiency. Bai S; Jia S; Zhao Y; Tang P; Feng Y; Luo R; Li D; Chen A Inorg Chem; 2023 Sep; 62(37):15039-15049. PubMed ID: 37652045 [TBL] [Abstract][Full Text] [Related]
10. In Situ Synthesis of α-Fe Lei B; Xu D; Wei B; Xie T; Xiao C; Jin W; Xu L ACS Appl Mater Interfaces; 2021 Jan; 13(3):4785-4795. PubMed ID: 33430580 [TBL] [Abstract][Full Text] [Related]
11. Photoanodes based on TiO Kment S; Riboni F; Pausova S; Wang L; Wang L; Han H; Hubicka Z; Krysa J; Schmuki P; Zboril R Chem Soc Rev; 2017 Jun; 46(12):3716-3769. PubMed ID: 28397882 [TBL] [Abstract][Full Text] [Related]
13. Achieving Highly Efficient Photoelectrochemical Water Oxidation with a TiCl Xu YF; Rao HS; Chen BX; Lin Y; Chen HY; Kuang DB; Su CY Adv Sci (Weinh); 2015 Jul; 2(7):1500049. PubMed ID: 27980959 [TBL] [Abstract][Full Text] [Related]
14. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System. Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672 [TBL] [Abstract][Full Text] [Related]
15. Insights into the enhanced photoelectrochemical performance of hydrothermally controlled hematite nanostructures for proficient solar water oxidation. Park JW; Subramanian A; Mahadik MA; Lee SY; Choi SH; Jang JS Dalton Trans; 2018 Mar; 47(12):4076-4086. PubMed ID: 29436539 [TBL] [Abstract][Full Text] [Related]
16. Facile synthesis of an ultrathin ZIF-67 layer on the surface of Sn/Ti co-doped hematite for efficient photoelectrochemical water oxidation. Huang P; Miao X; Wu J; Zhang P; Zhang H; Bai S; Liu W Dalton Trans; 2022 Jun; 51(22):8848-8854. PubMed ID: 35621155 [TBL] [Abstract][Full Text] [Related]
17. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance. Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649 [TBL] [Abstract][Full Text] [Related]
18. n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation. Yang JS; Lin WH; Lin CY; Wang BS; Wu JJ ACS Appl Mater Interfaces; 2015 Jun; 7(24):13314-21. PubMed ID: 26027640 [TBL] [Abstract][Full Text] [Related]
19. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation. Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603 [TBL] [Abstract][Full Text] [Related]
20. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting. Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]