These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33360997)

  • 1. Magnetometer-Free, IMU-Based Foot Progression Angle Estimation for Real-Life Walking Conditions.
    Tan T; Strout ZA; Xia H; Orban M; Shull PB
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():282-289. PubMed ID: 33360997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Foot Progression Angle Algorithm Estimation via Foot-Worn, Magneto-Inertial Sensing.
    Huang Y; Jirattigalachote W; Cutkosky MR; Zhu X; Shull PB
    IEEE Trans Biomed Eng; 2016 Nov; 63(11):2278-2285. PubMed ID: 26849858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Portable, automated foot progression angle gait modification via a proof-of-concept haptic feedback-sensorized shoe.
    Xia H; Charlton JM; Shull PB; Hunt MA
    J Biomech; 2020 Jun; 107():109789. PubMed ID: 32321637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altering foot progression angle in people with medial knee osteoarthritis: the effects of varying toe-in and toe-out angles are mediated by pain and malalignment.
    Simic M; Wrigley TV; Hinman RS; Hunt MA; Bennell KL
    Osteoarthritis Cartilage; 2013 Sep; 21(9):1272-80. PubMed ID: 23973141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foot progression angle estimation using a single foot-worn inertial sensor.
    Wouda FJ; Jaspar SLJO; Harlaar J; van Beijnum BF; Veltink PH
    J Neuroeng Rehabil; 2021 Feb; 18(1):37. PubMed ID: 33596942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subject-specific toe-in or toe-out gait modifications reduce the larger knee adduction moment peak more than a non-personalized approach.
    Uhlrich SD; Silder A; Beaupre GS; Shull PB; Delp SL
    J Biomech; 2018 Jan; 66():103-110. PubMed ID: 29174534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial sensing algorithms for long-term foot angle monitoring for assessment of idiopathic toe-walking.
    Chalmers E; Le J; Sukhdeep D; Watt J; Andersen J; Lou E
    Gait Posture; 2014; 39(1):485-9. PubMed ID: 24050952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of modifying foot progression angle on the knee loading parameters in healthy participants with different static foot postures.
    Qiu R; Xu R; Wang D; Ming D
    Gait Posture; 2020 Sep; 81():7-13. PubMed ID: 32650240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of a smart shoe for estimating foot progression angle during walking gait.
    Xia H; Xu J; Wang J; Hunt MA; Shull PB
    J Biomech; 2017 Aug; 61():193-198. PubMed ID: 28780187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Body-Worn IMU-Based Human Hip and Knee Kinematics Estimation during Treadmill Walking.
    McGrath T; Stirling L
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an IMU-based foot-ground contact detection (FGCD) algorithm.
    Kim M; Lee D
    Ergonomics; 2017 Mar; 60(3):384-403. PubMed ID: 27068742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validity and reliability of a shoe-embedded sensor module for measuring foot progression angle during over-ground walking.
    Charlton JM; Xia H; Shull PB; Hunt MA
    J Biomech; 2019 May; 89():123-127. PubMed ID: 31047695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable Real-Time Haptic Biofeedback Foot Progression Angle Gait Modification to Assess Short-Term Retention and Cognitive Demand.
    Shull PB; Xia H; Charlton JM; Hunt MA
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1858-1865. PubMed ID: 34478376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of wearable visual feedback for retraining foot progression angle using inertial sensors and an augmented reality headset.
    Karatsidis A; Richards RE; Konrath JM; van den Noort JC; Schepers HM; Bellusci G; Harlaar J; Veltink PH
    J Neuroeng Rehabil; 2018 Aug; 15(1):78. PubMed ID: 30111337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated method to distinguish toe walking strides from normal strides in the gait of idiopathic toe walking children from heel accelerometry data.
    Pendharkar G; Percival P; Morgan D; Lai D
    Gait Posture; 2012 Mar; 35(3):478-82. PubMed ID: 22300731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Human Gait Tracking System Using Dual Foot-Mounted IMU and Multiple 2D LiDARs.
    Duong HT; Suh YS
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust Foot Clearance Estimation Based on the Integration of Foot-Mounted IMU Acceleration Data.
    Benoussaad M; Sijobert B; Mombaur K; Coste CA
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining Individualized Foot Progression Angle for Reduction of Knee Medial Compartment Loading during Stepping.
    Baghi R; Yin W; Ramadan A; Badhyal S; Oppizzi G; Xu D; Bowman P; Henn F; Zhang LQ
    Med Sci Sports Exerc; 2025 Jan; 57(1):33-43. PubMed ID: 39186734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the Impact of IMU Sensor Location and Walking Task on Accuracy of Gait Event Detection Algorithms.
    Niswander W; Kontson K
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34207781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.