BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 33361368)

  • 1. Acquired Resistance to Severe Ethanol Stress in Saccharomyces cerevisiae Protein Quality Control.
    Yoshida M; Kato S; Fukuda S; Izawa S
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33361368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wine Yeast Cells Acquire Resistance to Severe Ethanol Stress and Suppress Insoluble Protein Accumulation during Alcoholic Fermentation.
    Yoshida M; Furutani N; Imai F; Miki T; Izawa S
    Microbiol Spectr; 2022 Oct; 10(5):e0090122. PubMed ID: 36040149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Btn2 is involved in the clearance of denatured proteins caused by severe ethanol stress in Saccharomyces cerevisiae.
    Kato S; Yoshida M; Izawa S
    FEMS Yeast Res; 2019 Dec; 19(8):. PubMed ID: 31711140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of the yeast bi-chaperone system in the restoration of the RNA helicase Ded1 and translational activity under severe ethanol stress.
    Ando R; Ishikawa Y; Kamada Y; Izawa S
    J Biol Chem; 2023 Dec; 299(12):105472. PubMed ID: 37979914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acquired resistance to severe ethanol stress-induced inhibition of proteasomal proteolysis in Saccharomyces cerevisiae.
    Nguyet VTA; Furutani N; Ando R; Izawa S
    Biochim Biophys Acta Gen Subj; 2022 Dec; 1866(12):130241. PubMed ID: 36075516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independent Mechanisms for Acquired Salt Tolerance versus Growth Resumption Induced by Mild Ethanol Pretreatment in
    McDaniel EA; Stuecker TN; Veluvolu M; Gasch AP; Lewis JA
    mSphere; 2018 Nov; 3(6):. PubMed ID: 30487155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein synthesis of Btn2 under pronounced translation repression during the process of alcoholic fermentation and wine-making in yeast.
    Kato S; Yamauchi Y; Izawa S
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9669-9677. PubMed ID: 30141081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses.
    Charoenbhakdi S; Dokpikul T; Burphan T; Techo T; Auesukaree C
    Appl Environ Microbiol; 2016 May; 82(10):3121-3130. PubMed ID: 26994074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential stress response of Saccharomyces hybrids revealed by monitoring Hsp104 aggregation and disaggregation.
    Kempf C; Lengeler K; Wendland J
    Microbiol Res; 2017 Jul; 200():53-63. PubMed ID: 28527764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prioritized Expression of BTN2 of Saccharomyces cerevisiae under Pronounced Translation Repression Induced by Severe Ethanol Stress.
    Yamauchi Y; Izawa S
    Front Microbiol; 2016; 7():1319. PubMed ID: 27602028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Severe ethanol stress induces the preferential synthesis of mitochondrial disaggregase Hsp78 and formation of DUMPs in Saccharomyces cerevisiae.
    Ishikawa Y; Nishino S; Fukuda S; Nguyet VTA; Izawa S
    Biochim Biophys Acta Gen Subj; 2022 Jul; 1866(7):130147. PubMed ID: 35417764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae.
    Ohta E; Nakayama Y; Mukai Y; Bamba T; Fukusaki E
    J Biosci Bioeng; 2016 Apr; 121(4):399-405. PubMed ID: 26344121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane Fluidity of Saccharomyces cerevisiae from
    Yang Y; Xia Y; Hu W; Tao L; Ni L; Yu J; Ai L
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptability of wine yeast to ethanol-induced protein denaturation.
    Furutani N; Izawa S
    FEMS Yeast Res; 2022 Nov; 22(1):. PubMed ID: 36385376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast.
    Espinazo-Romeu M; Cantoral JM; Matallana E; Aranda A
    FEMS Yeast Res; 2008 Nov; 8(7):1127-36. PubMed ID: 18554307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation.
    Cheng C; Zhang M; Xue C; Bai F; Zhao X
    J Biosci Bioeng; 2017 Feb; 123(2):141-146. PubMed ID: 27576171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production.
    Sasano Y; Watanabe D; Ukibe K; Inai T; Ohtsu I; Shimoi H; Takagi H
    J Biosci Bioeng; 2012 Apr; 113(4):451-5. PubMed ID: 22178024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast.
    Yamamoto Y; Izawa S
    Genes Cells; 2013 Nov; 18(11):974-84. PubMed ID: 24033457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol stress impairs protein folding in the endoplasmic reticulum and activates Ire1 in Saccharomyces cerevisiae.
    Miyagawa K; Ishiwata-Kimata Y; Kohno K; Kimata Y
    Biosci Biotechnol Biochem; 2014; 78(8):1389-91. PubMed ID: 25130742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains.
    Bleoanca I; Silva AR; Pimentel C; Rodrigues-Pousada C; Menezes Rde A
    J Biosci Bioeng; 2013 Dec; 116(6):697-705. PubMed ID: 23838012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.