These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33361558)

  • 1. The mechanical property and microscopic deformation mechanism of nanoparticle-contained graphene foam materials under uniaxial compression.
    Khan MB; Wang C; Wang S; Fang D; Chen S
    Nanotechnology; 2021 Mar; 32(11):115701. PubMed ID: 33361558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic deformation mechanism and main influencing factors of carbon nanotube coated graphene foams under uniaxial compression.
    Wang S; Wang C; Khan MB; Chen S
    Nanotechnology; 2021 Jun; 32(34):. PubMed ID: 34081029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model.
    Pan D; Wang C; Wang TC; Yao Y
    ACS Nano; 2017 Sep; 11(9):8988-8997. PubMed ID: 28825792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical Properties and Deformation Mechanisms of Graphene Foams with Bi-Modal Sheet Thickness by Coarse-Grained Molecular Dynamics Simulations.
    Liu S; Lyu M; Wang C
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene Foam: Hole-Flake Network for Uniaxial Supercompression and Recovery Behavior.
    Pan D; Wang C; Wang X
    ACS Nano; 2018 Nov; 12(11):11491-11502. PubMed ID: 30394082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size of graphene sheets determines the structural and mechanical properties of 3D graphene foams.
    Shen Z; Ye H; Zhou C; Kröger M; Li Y
    Nanotechnology; 2018 Mar; 29(10):104001. PubMed ID: 29311421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compression-Softening Bond Model for Non-Water Reactive Foaming Polyurethane Grouting Material.
    Dong B; Du M; Fang H; Wang F; Zhang H; Zhu L
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of Viscoelastic Properties of Graphene Foams Using Dynamic Mechanical Analysis and Coarse-Grained Molecular Dynamics Simulations.
    Liu S; Lyu M; Yang C; Jiang M; Wang C
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Damping and High Strength of Graphene-Coated Nickel Hybrid Foams.
    Wang H; Ma C; Zhang W; Cheng HM; Zeng Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42690-42696. PubMed ID: 31638382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and properties of rigid polyurethane foams added with graphene oxide-hollow glass microspheres hybrid.
    Liu D; Zou L; Chang Q; Xiao T
    Des Monomers Polym; 2021; 24(1):208-215. PubMed ID: 34345199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanical response and microscopic deformation mechanism of graphene foams tuned by long carbon nanotubes and short crosslinkers.
    Wang S; Yang T; Wang C; Liang L
    Phys Chem Chem Phys; 2022 Dec; 25(1):192-202. PubMed ID: 36484421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compaction Behavior and Damage Constitutive Model for Porous Cement Mortar under Uniaxial Cyclic Loads.
    Liu DH; Qin Y; Zhuo L; Liu JF; Zheng ZQ; Pei JL; Liu HZ
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prospects for graphene-nanoparticle-based hybrid sensors.
    Yin PT; Kim TH; Choi JW; Lee KB
    Phys Chem Chem Phys; 2013 Aug; 15(31):12785-99. PubMed ID: 23828095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unconventional and Dynamically Anisotropic Thermal Conductivity in Compressed Flexible Graphene Foams.
    Xiong Z; Marconnet A; Ruan X
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48960-48966. PubMed ID: 36256868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Nanoparticle Size on the Mechanical Strength of Ni-Graphene Composites.
    Krylova KA; Safina LR; Murzaev RT; Baimova JA; Mulyukov RR
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics of graphyne crumpling.
    Becton M; Zhang L; Wang X
    Phys Chem Chem Phys; 2014 Sep; 16(34):18233-40. PubMed ID: 25055042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution Evaporation-Driven Crumpling and Assembling of Large-Accessible-Space, High-Mechanical-Strength Graphene/Carbon Nanotube Composite Nanoparticles.
    Liu Q; Xu B
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):43058-43064. PubMed ID: 32840347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery from mechanical degradation of graphene by defect enlargement.
    Zheng B; Gu GX
    Nanotechnology; 2019 Nov; 31(8):085707. PubMed ID: 31683264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional theory study on the influence of tension and compression deformation on the electrical and phonon properties of monolayer and bilayer graphene.
    Wei L; Liu G; Qu Y; Zhang G
    J Mol Model; 2021 Apr; 27(5):138. PubMed ID: 33903936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Properties of Graphene Foam and Graphene Foam - Tissue Composites.
    Yocham KM; Scott C; Fujimoto K; Brown R; Tanasse E; Oxford JT; Lujan TJ; Estrada D
    Adv Eng Mater; 2018 Sep; 20(9):. PubMed ID: 30581324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.