These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 33361736)
61. TXNDC9 knockdown inhibits lung adenocarcinoma progression by targeting YWHAG. Wang J; Pan X; Li J; Zhao J Mol Med Rep; 2022 Jun; 25(6):. PubMed ID: 35485284 [TBL] [Abstract][Full Text] [Related]
62. Overexpression of FYN suppresses the epithelial-to-mesenchymal transition through down-regulating PI3K/AKT pathway in lung adenocarcinoma. Xue F; Jia Y; Zhao J Surg Oncol; 2020 Jun; 33():108-117. PubMed ID: 32561075 [TBL] [Abstract][Full Text] [Related]
63. Evaluation of the prognostic values of solute carrier (SLC) family 39 genes for patients with lung adenocarcinoma. Zhou H; Zhu Y; Qi H; Liang L; Wu H; Yuan J; Hu Q Aging (Albany NY); 2021 Feb; 13(4):5312-5331. PubMed ID: 33535184 [TBL] [Abstract][Full Text] [Related]
64. Methylation of CLEC14A is associated with its expression and lung adenocarcinoma progression. Su C; Shi K; Cheng X; Han Y; Li Y; Yu D; Liu Z J Cell Physiol; 2019 Mar; 234(3):2954-2962. PubMed ID: 30191970 [TBL] [Abstract][Full Text] [Related]
65. Functions and clinical significance of KLRG1 in the development of lung adenocarcinoma and immunotherapy. Yang X; Zheng Y; Han Z; Zhang X BMC Cancer; 2021 Jun; 21(1):752. PubMed ID: 34187403 [TBL] [Abstract][Full Text] [Related]
66. High Xie L; Dang Y; Guo J; Sun X; Xie T; Zhang L; Yan Z; Amin H; Guo X Genes (Basel); 2019 Jan; 10(1):. PubMed ID: 30634629 [TBL] [Abstract][Full Text] [Related]
67. Elevated FAM83A expression predicts poorer clincal outcome in lung adenocarcinoma. Zhang J; Sun G; Mei X Cancer Biomark; 2019; 26(3):367-373. PubMed ID: 31594212 [TBL] [Abstract][Full Text] [Related]
68. Multi-omics analysis of genomics, epigenomics and transcriptomics for molecular subtypes and core genes for lung adenocarcinoma. Zhao Y; Gao Y; Xu X; Zhou J; Wang H BMC Cancer; 2021 Mar; 21(1):257. PubMed ID: 33750346 [TBL] [Abstract][Full Text] [Related]
69. HCG18/miR-34a-5p/HMMR axis accelerates the progression of lung adenocarcinoma. Li W; Pan T; Jiang W; Zhao H Biomed Pharmacother; 2020 Sep; 129():110217. PubMed ID: 32559619 [TBL] [Abstract][Full Text] [Related]
70. microRNA-1205 promotes cell growth by targeting APC2 in lung adenocarcinoma. Dai B; Kong DL; Tian J; Liu TW; Zhou H; Wang ZF Eur Rev Med Pharmacol Sci; 2019 Feb; 23(3):1125-1133. PubMed ID: 30779081 [TBL] [Abstract][Full Text] [Related]
71. Expression of UBE2C in lung adenocarcinoma based on database analysis and its clinical significance. Liu Y; Huang F; Chen H; Peng Q; Zhao C; Miao L Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2020 Sept 28; 45(9):1044-1052. PubMed ID: 33051417 [TBL] [Abstract][Full Text] [Related]
72. Limb-Bud and Heart Attenuates Growth and Invasion of Human Lung Adenocarcinoma Cells and Predicts Survival Outcome. Deng M; Yu R; Wang S; Zhang Y; Li Z; Song H; Liu B; Xu L; Wang X; Zhang Z; Lv Q; Wang X; Che X; Qu X; Liu Y; Hu X Cell Physiol Biochem; 2018; 47(1):223-234. PubMed ID: 29788015 [TBL] [Abstract][Full Text] [Related]
73. Characterization of a non-coding RNA-associated ceRNA network in metastatic lung adenocarcinoma. Fan F; Ping Y; Yang L; Duan X; Resegofetse Maimela N; Li B; Li X; Chen J; Zhang K; Wang L; Liu S; Zhao X; Wang H; Zhang Y J Cell Mol Med; 2020 Oct; 24(20):11680-11690. PubMed ID: 32860342 [TBL] [Abstract][Full Text] [Related]
74. Systematic construction and validation of an immune prognostic model for lung adenocarcinoma. Luo C; Lei M; Zhang Y; Zhang Q; Li L; Lian J; Liu S; Wang L; Pi G; Zhang Y J Cell Mol Med; 2020 Jan; 24(2):1233-1244. PubMed ID: 31779055 [TBL] [Abstract][Full Text] [Related]
75. Molecular characterization of lung adenocarcinoma: A potential four-long noncoding RNA prognostic signature. Sui J; Yang S; Liu T; Wu W; Xu S; Yin L; Pu Y; Zhang X; Zhang Y; Shen B; Liang G J Cell Biochem; 2019 Jan; 120(1):705-714. PubMed ID: 30125988 [TBL] [Abstract][Full Text] [Related]
76. Eight-gene signature predicts recurrence in lung adenocarcinoma. Zhang Y; Fan Q; Guo Y; Zhu K Cancer Biomark; 2020; 28(4):447-457. PubMed ID: 32508318 [TBL] [Abstract][Full Text] [Related]
77. XBP1s promotes the development of lung adenocarcinoma via the p‑JNK MAPK pathway. Jiang H; Jiang Q; He Y; Li X; Xu Y; Liu X Int J Mol Med; 2022 Mar; 49(3):. PubMed ID: 35059734 [TBL] [Abstract][Full Text] [Related]
78. Identification of CAV1 and DCN as potential predictive biomarkers for lung adenocarcinoma. Yan Y; Xu Z; Qian L; Zeng S; Zhou Y; Chen X; Wei J; Gong Z Am J Physiol Lung Cell Mol Physiol; 2019 Apr; 316(4):L630-L643. PubMed ID: 30604627 [TBL] [Abstract][Full Text] [Related]
79. USF1-induced overexpression of long noncoding RNA WDFY3-AS2 promotes lung adenocarcinoma progression via targeting miR-491-5p/ZNF703 axis. Ren P; Hong X; Chang L; Xing L; Zhang H Mol Carcinog; 2020 Aug; 59(8):875-885. PubMed ID: 32275336 [TBL] [Abstract][Full Text] [Related]
80. Identification of a novel glycolysis-related gene signature for predicting metastasis and survival in patients with lung adenocarcinoma. Zhang L; Zhang Z; Yu Z J Transl Med; 2019 Dec; 17(1):423. PubMed ID: 31847905 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]