These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 33361931)
1. Tunable broadband terahertz absorber based on plasmon hybridization in monolayer graphene ring arrays. Hu D; Meng T; Wang H; Ma Y Appl Opt; 2020 Dec; 59(35):11053-11058. PubMed ID: 33361931 [TBL] [Abstract][Full Text] [Related]
2. Dual-Tunable Broadband Terahertz Absorber Based on a Hybrid Graphene-Dirac Semimetal Structure. Wu J; Yuan X; Zhang Y; Yan X; Zhang X Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33322381 [TBL] [Abstract][Full Text] [Related]
3. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption. Zhu H; Zhang Y; Ye L; Li Y; Xu Y; Xu R Opt Express; 2020 Dec; 28(26):38626-38637. PubMed ID: 33379429 [TBL] [Abstract][Full Text] [Related]
4. Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range. Ye L; Chen Y; Cai G; Liu N; Zhu J; Song Z; Liu QH Opt Express; 2017 May; 25(10):11223-11232. PubMed ID: 28788804 [TBL] [Abstract][Full Text] [Related]
5. Tunable broadband terahertz absorber based on a single-layer graphene metasurface. Han J; Chen R Opt Express; 2020 Sep; 28(20):30289-30298. PubMed ID: 33114911 [TBL] [Abstract][Full Text] [Related]
6. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime. Huang X; He W; Yang F; Ran J; Gao B; Zhang WL Opt Express; 2018 Oct; 26(20):25558-25566. PubMed ID: 30469656 [TBL] [Abstract][Full Text] [Related]
7. A dual ultra-broadband switchable high-performance terahertz absorber based on hybrid graphene and vanadium dioxide. Chen W; Li C; Wang D; Gao S; Zhang C; Guo H; An W; Guo S; Wu G Phys Chem Chem Phys; 2023 Aug; 25(30):20414-20421. PubMed ID: 37466116 [TBL] [Abstract][Full Text] [Related]
8. Dual-regulated broadband terahertz absorber based on vanadium dioxide and graphene. Zhang C; Zhang H; Ling F; Zhang B Appl Opt; 2021 Jun; 60(16):4835-4840. PubMed ID: 34143037 [TBL] [Abstract][Full Text] [Related]
9. Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces. Ye L; Chen X; Cai G; Zhu J; Liu N; Liu QH Nanomaterials (Basel); 2018 Jul; 8(8):. PubMed ID: 30042289 [TBL] [Abstract][Full Text] [Related]
10. Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials. Feng H; Xu Z; Li K; Wang M; Xie W; Luo Q; Chen B; Kong W; Yun M Opt Express; 2021 Mar; 29(5):7158-7167. PubMed ID: 33726222 [TBL] [Abstract][Full Text] [Related]
11. Polarization-Insensitive Broadband THz Absorber Based on Circular Graphene Patches. Qian J; Zhou J; Zhu Z; Ge Z; Wu S; Liu X; Yi J Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685150 [TBL] [Abstract][Full Text] [Related]
12. Numerical Investigation of Graphene and STO Based Tunable Terahertz Absorber with Switchable Bifunctionality of Broadband and Narrowband Absorption. Liu Y; Huang R; Ouyang Z Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443875 [TBL] [Abstract][Full Text] [Related]
13. Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene. Huang ML; Cheng YZ; Cheng ZZ; Chen HR; Mao XS; Gong RZ Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29614736 [TBL] [Abstract][Full Text] [Related]
14. Graphene-Based THz Absorber with a Broad Band for Tuning the Absorption Rate and a Narrow Band for Tuning the Absorbing Frequency. Zhou Q; Liu P; Liu C; Zhou Y; Zha S Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31398824 [TBL] [Abstract][Full Text] [Related]
15. A Broadband Tunable Terahertz Metamaterial Absorber Based on Single-Layer Complementary Gammadion-Shaped Graphene. Chen F; Cheng Y; Luo H Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32075066 [TBL] [Abstract][Full Text] [Related]
16. Dynamically switchable broadband and triple-band terahertz absorber based on a metamaterial structure with graphene. Chen Z; Chen J; Tang H; Shen T; Zhang H Opt Express; 2022 Feb; 30(5):6778-6785. PubMed ID: 35299456 [TBL] [Abstract][Full Text] [Related]
17. Dynamic Modulation of THz Absorption Frequency, Bandwidth, and Amplitude via Strontium Titanate and Graphene. Wu T; Wang G; Jia Y; Shao Y; Gao Y; Gao Y Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458063 [TBL] [Abstract][Full Text] [Related]
18. A Polarization-Insensitive and Wide-Angle Terahertz Absorber with Ring-Porous Patterned Graphene Metasurface. Shen H; Liu F; Liu C; Zeng D; Guo B; Wei Z; Wang F; Tan C; Huang X; Meng H Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32707727 [TBL] [Abstract][Full Text] [Related]
19. A Polarization-Insensitive Broadband Terahertz Absorber Using Patterned Graphene. Fu M; Wang J; Guo S; Wang Z; Yang P; Niu Y Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364549 [TBL] [Abstract][Full Text] [Related]
20. Dual-controlled broadband terahertz absorber based on graphene and Dirac semimetal. Xiong H; Ji Q; Bashir T; Yang F Opt Express; 2020 Apr; 28(9):13884-13894. PubMed ID: 32403854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]