BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33361967)

  • 1. Spatial frequency-based angular behavior of a short-range flicker-free MIMO-OCC link.
    Teli SR; Zvanovec S; Perez-Jimenez R; Ghassemlooy Z
    Appl Opt; 2020 Nov; 59(33):10357-10368. PubMed ID: 33361967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Camera Communications for IoT-Rolling-Shutter Based MIMO Scheme with Grouped LED Array Transmitter.
    Teli SR; Matus V; Zvanovec S; Perez-Jimenez R; Vitek S; Ghassemlooy Z
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32545751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical camera communications link using an LED-coupled illuminating optical fiber.
    Teli SR; Eollosova K; Zvanovec S; Ghassemlooy Z; Komanec M
    Opt Lett; 2021 Jun; 46(11):2622-2625. PubMed ID: 34061072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical camera communication for mobile payments using an LED panel light.
    Chen HW; Wen SS; Liu Y; Fu M; Weng ZC; Zhang M
    Appl Opt; 2018 Jul; 57(19):5288-5294. PubMed ID: 30117816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing a comprehensive model for underwater MIMO OCC system.
    Hamidnejad E; Gholami A
    Opt Express; 2023 Sep; 31(20):31870-31883. PubMed ID: 37859002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical camera communication (OCC) using a laser-diode coupled optical-diffusing fiber (ODF) and rolling shutter image sensor.
    Tsai DC; Chang YH; Chow CW; Liu Y; Yeh CH; Peng CW; Hsu LS
    Opt Express; 2022 May; 30(10):16069-16077. PubMed ID: 36221459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unmanned-aerial-vehicle based optical camera communication system using light-diffusing fiber and rolling-shutter image-sensor.
    Chang YH; Tsai SY; Chow CW; Wang CC; Tsai DC; Liu Y; Yeh CH
    Opt Express; 2023 May; 31(11):18670-18679. PubMed ID: 37381574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curved OLED-based NLOS optical camera communications links.
    Teli SR; Matus V; Aguiar CL; Perez-Jimenez R; Ghassemlooy Z; Zvanovec S
    Appl Opt; 2023 Oct; 62(30):8204-8210. PubMed ID: 38038119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Implementation of a Hybrid Optical Camera Communication System for Indoor Applications.
    Nguyen H; Le NT; Le DTA; Jang YM
    Sensors (Basel); 2024 Jan; 24(1):. PubMed ID: 38203162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interference cancellation in MIMO NLOS optical-camera-communication-based intelligent transport systems.
    Hassan NB; Ghassemlooy Z; Zvanovec S; Biagi M; Vegni AM; Zhang M; Huang Y
    Appl Opt; 2019 Dec; 58(34):9384-9391. PubMed ID: 31873529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust OCC System Optimized for Low-Frame-Rate Receivers.
    Dobre RA; Preda RO; Badea RA
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-distance indoor optical camera communication using side-emitting fibers as distributed transmitters.
    Eöllős-Jarošíková K; Neuman V; Jurado-Verdú CM; Teli SR; Zvánovec S; Komanec M
    Opt Express; 2023 Jul; 31(16):26980-26989. PubMed ID: 37710546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametric modeling and experimental measurement of rolling shutter characteristics for optical camera communication using undersampled modulation.
    Dong K; Ke X; Zhang X; Wang M
    Appl Opt; 2022 Sep; 61(27):7838-7845. PubMed ID: 36255906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of a vehicle's mobility on SNR and SINR in vehicular optical camera communication systems.
    Eghbal M; Tabataba FS; Gholami A; Abouei J; Uysal M
    Opt Express; 2024 Mar; 32(7):12257-12275. PubMed ID: 38571054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Implementation of a Novel Compatible Encoding Scheme in the Time Domain for Image Sensor Communication.
    Nguyen T; Hossain MA; Jang YM
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27213396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimentally Derived Feasibility of Optical Camera Communications under Turbulence and Fog Conditions.
    Matus V; Eso E; Teli SR; Perez-Jimenez R; Zvanovec S
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32019126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vehicle positioning scheme based on visible light communication using a CMOS camera.
    He J; Zhou B
    Opt Express; 2021 Aug; 29(17):27278-27290. PubMed ID: 34615146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confidential multiple-input multiple-output optical camera communication aided by a two-dimensional pilot.
    Hu SS; Chi XF; Ji FL; Chen SQ; Hu GY
    Opt Lett; 2024 May; 49(10):2757-2760. PubMed ID: 38748154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 400  m rolling-shutter-based optical camera communications link.
    Eso E; Teli S; Bani Hassan N; Vitek S; Ghassemlooy Z; Zvanovec S
    Opt Lett; 2020 Mar; 45(5):1059-1062. PubMed ID: 32108769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless Sensor Networks Using Sub-Pixel Optical Camera Communications: Advances in Experimental Channel Evaluation.
    Matus V; Guerra V; Jurado-Verdu C; Zvanovec S; Perez-Jimenez R
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.