BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33361971)

  • 1. Wavelength selection approach for an incoherent optical detection sensor (LiDAR).
    Mudge J
    Appl Opt; 2020 Nov; 59(33):10396-10405. PubMed ID: 33361971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing an incoherent optical detection sensor (LiDAR) utilizing a range-compensating lens.
    Mudge J
    Appl Opt; 2020 Jul; 59(20):6076-6084. PubMed ID: 32672753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incoherent detection sensor design approach using Gaussian optics.
    Mudge J
    Appl Opt; 2020 Mar; 59(7):1939-1947. PubMed ID: 32225710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Parameters Optimization for All-Time Star Sensor.
    Wang W; Wei X; Li J; Du J; Zhang G
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31277512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelength selection and measurement error theoretical analysis on ground-based coherent differential absorption lidar using 1.53  µm wavelength for simultaneous vertical profiling of water vapor density and wind speed: publisher's note.
    Imaki M; Hirosawa K; Yanagisawa T; Kameyama S; Kuze H
    Appl Opt; 2020 Mar; 59(8):2667. PubMed ID: 32225812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Out-of-band effects of satellite ocean color sensors.
    Wang M; Naik P; Son S
    Appl Opt; 2016 Mar; 55(9):2312-23. PubMed ID: 27140568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensor Calibration Based on Incoherent Optical Fiber Bundles (IOFB) Used For Remote Image Transmission.
    Lázaro JL; Fernández PR; Gardel A; Cano AE; Luna CA
    Sensors (Basel); 2009; 9(10):8215-29. PubMed ID: 22408502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Optical Chiral Sensor Based on Weak Measurement for the Real-Time Monitoring of Sucrose Hydrolysis.
    Li D; Weng C; Ruan Y; Li K; Cai G; Song C; Lin Q
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33540721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase space analysis of two-wavelength interferometry.
    Leonard RH; Olson SE
    Appl Opt; 2024 Jan; 63(1):42-48. PubMed ID: 38175003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Point-diffraction interferometer wavefront sensor with birefringent crystal.
    Tsukui R; Kino M; Yamamoto K; Kurita M
    Appl Opt; 2020 Sep; 59(27):8370-8379. PubMed ID: 32976424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-power lasers for directed-energy applications: reply.
    Sprangle P; Hafizi B; Ting A; Fischer RP; Davis CC; Nelson W
    Appl Opt; 2017 Jun; 56(16):4825-4826. PubMed ID: 29047619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. End-to-end sensor simulation for spectral band selection and optimization with application to the Sentinel-2 mission.
    Segl K; Richter R; Küster T; Kaufmann H
    Appl Opt; 2012 Feb; 51(4):439-49. PubMed ID: 22307113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic optical data.
    Kolgotin A; Müller D; Chemyakin E; Romanov A
    Appl Opt; 2016 Dec; 55(34):9850-9865. PubMed ID: 27958481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications.
    Padmanabhan P; Zhang C; Charbon E
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Definition 3D Map Creation Using GNSS/IMU/LiDAR Sensor Integration to Support Autonomous Vehicle Navigation.
    Ilci V; Toth C
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral interferometric measurement of wavelength-dependent phase response for surface plasmon resonance sensors.
    Zheng Z; Wan Y; Zhao X; Zhu J
    Appl Opt; 2009 May; 48(13):2491-5. PubMed ID: 19412208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weather Classification Using an Automotive LIDAR Sensor Based on Detections on Asphalt and Atmosphere.
    Vargas Rivero JR; Gerbich T; Teiluf V; Buschardt B; Chen J
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32752297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evanescent Properties of Optical Diffraction from 2-Dimensional Hexagonal Photonic Crystals and Their Sensor Applications.
    Liao YY; Chen YT; Chen CC; Huang JJ
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29614036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the lamp mapping technique for overlap function for Raman lidar systems.
    Walker M; Venable D; Whiteman DN; Sakai T
    Appl Opt; 2016 Apr; 55(10):2551-8. PubMed ID: 27139656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar.
    Rees D; McDermid IS
    Appl Opt; 1990 Oct; 29(28):4133-44. PubMed ID: 20577356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.