These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 33361995)

  • 1. Comparison of maritime measurements of
    Mahon R; Moore CI; Ferraro MS; Rabinovich WS; Frederickson PA
    Appl Opt; 2020 Nov; 59(33):10599-10612. PubMed ID: 33361995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the surface layer refractive index structure constant over snow and sea ice using Monin-Obukhov similarity theory with a mesoscale atmospheric model.
    Qing C; Wu X; Huang H; Tian Q; Zhu W; Rao R; Li X
    Opt Express; 2016 Sep; 24(18):20424-36. PubMed ID: 27607648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of weather research and forecasting model outputs to obtain near-surface refractive index structure constant over the ocean.
    Qing C; Wu X; Li X; Zhu W; Qiao C; Rao R; Mei H
    Opt Express; 2016 Jun; 24(12):13303-15. PubMed ID: 27410347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical scintillation in a maritime environment.
    Rabinovich WS; Mahon R; Ferraro MS
    Opt Express; 2023 Mar; 31(6):10217-10236. PubMed ID: 37157574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple method to estimate the optical turbulence over snow and ice.
    Yang Q; Wu X; Wu S; Han Y; Su C; Zhang S; Qing C
    J Opt Soc Am A Opt Image Sci Vis; 2021 Oct; 38(10):1483-1488. PubMed ID: 34612978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Path-averaged Cn2 estimation using a laser-and-corner-cube system.
    Cole WP; Marciniak MA
    Appl Opt; 2009 Jul; 48(21):4256-62. PubMed ID: 19623240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring path average Cn2 values in the marine environment.
    Vetelino FS; Grayshan K; Young CY
    J Opt Soc Am A Opt Image Sci Vis; 2007 Oct; 24(10):3198-206. PubMed ID: 17912310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning informed predictor importance measures of environmental parameters in maritime optical turbulence.
    Jellen C; Burkhardt J; Brownell C; Nelson C
    Appl Opt; 2020 Jul; 59(21):6379-6389. PubMed ID: 32749303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine-learning informed macro-meteorological models for the near-maritime environment.
    Jellen C; Oakley M; Nelson C; Burkhardt J; Brownell C
    Appl Opt; 2021 Apr; 60(11):2938-2951. PubMed ID: 33983186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliable model to estimate the profile of the refractive index structure parameter (C
    Wu S; Wu X; Su C; Yang Q; Xu J; Luo T; Huang C; Qing C
    Opt Express; 2021 Apr; 29(8):12454-12470. PubMed ID: 33985004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extending a surface-layer Cn2 model for strongly stratified conditions utilizing a numerically generated turbulence dataset.
    He P; Basu S
    Opt Express; 2016 May; 24(9):9574-82. PubMed ID: 27137570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of atmospheric refractive index structure parameter (Cn2) on the residence time and vertical distribution of aerosols.
    Anand N; Satheesh SK; Krishna Moorthy K
    Opt Lett; 2017 Jul; 42(14):2714-2717. PubMed ID: 28708151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic inversion for Monin-Obukhov similarity parameters from wind noise in a convective boundary layer.
    Hart CR; Nykaza ET; White MJ
    J Acoust Soc Am; 2018 Sep; 144(3):1258. PubMed ID: 30424635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the turbulence profile in the lower atmospheric boundary layer.
    van Iersel M; Paulson DA; Wu C; Ferlic NA; Rzasa JR; Davis CC; Walker M; Bowden M; Spychalsky J; Titus F
    Appl Opt; 2019 Sep; 58(25):6934-6941. PubMed ID: 31503665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric optical turbulence over land in middle east coastal environments: prediction modeling and measurements.
    Bendersky S; Kopeika NS; Blaunstein N
    Appl Opt; 2004 Jul; 43(20):4070-9. PubMed ID: 15285098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Computational Model of Cn2 Profile Inversion for Atmospheric Laser Communication in the Vertical Path.
    Yao H; Cao Y; Wang W; Jiang Q; Cao J; Hao Q; Liu Z; Zhang P; Chang Y; Zhang G; Geng T
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of refractive index structure parameter estimation for certain infrared bands.
    Sivaslıgil M; Erol CB; Polat ÖM; Sarı H
    Appl Opt; 2013 May; 52(14):3127-33. PubMed ID: 23669824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical timing jitter due to atmospheric turbulence: comparison of frequency comb measurements to predictions from micrometeorological sensors.
    Caldwell ED; Swann WC; Ellis JL; Bodine MI; Mak C; Kuczun N; Newbury NR; Sinclair LC; Muschinski A; Rieker GB
    Opt Express; 2020 Aug; 28(18):26661-26675. PubMed ID: 32906936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of long-term measurements of laser propagation over the Chesapeake Bay.
    Mahon R; Moore CI; Burris HR; Rabinovich WS; Stell M; Suite MR; Thomas LM
    Appl Opt; 2009 Apr; 48(12):2388-400. PubMed ID: 19381192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining the fluctuation of PM
    Ren Y; Zhang H; Wei W; Cai X; Song Y
    Sci Total Environ; 2020 Mar; 710():136398. PubMed ID: 31927293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.