BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33362125)

  • 1. Improving characteristic band selection in leaf biochemical property estimation considering interrelations among biochemical parameters based on the PROSPECT-D model.
    Yang J; Yang S; Zhang Y; Shi S; Du L
    Opt Express; 2021 Jan; 29(1):400-414. PubMed ID: 33362125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An extended PROSPECT: Advance in the leaf optical properties model separating total chlorophylls into chlorophyll a and b.
    Zhang Y; Huang J; Wang F; Blackburn GA; Zhang HK; Wang X; Wei C; Zhang K; Wei C
    Sci Rep; 2017 Jul; 7(1):6429. PubMed ID: 28743986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.
    Kong W; Huang W; Casa R; Zhou X; Ye H; Dong Y
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf Biochemistry Parameters Estimation of Vegetation Using the Appropriate Inversion Strategy.
    Du L; Yang J; Sun J; Shi S; Gong W
    Front Plant Sci; 2020; 11():533. PubMed ID: 32670300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data-Driven Methods for the Estimation of Leaf Water and Dry Matter Content: Performances, Potential and Limitations.
    Yang B; Lin H; He Y
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32967134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gaussian processes retrieval of leaf parameters from a multi-species reflectance, absorbance and fluorescence dataset.
    Van Wittenberghe S; Verrelst J; Rivera JP; Alonso L; Moreno J; Samson R
    J Photochem Photobiol B; 2014 May; 134():37-48. PubMed ID: 24792473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Estimation models for vegetation water content at both leaf and canopy levels].
    Shen Y; Niu Z; Yan C
    Ying Yong Sheng Tai Xue Bao; 2005 Jul; 16(7):1218-23. PubMed ID: 16252855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of leaf traits from reflectance measurements: comparison between methods based on vegetation indices and several versions of the PROSPECT model.
    Jiang J; Comar A; Burger P; Bancal P; Weiss M; Baret F
    Plant Methods; 2018; 14():23. PubMed ID: 29581726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of leaf water content from hyperspectral data of different plant species by using three new spectral absorption indices.
    Li H; Yang W; Lei J; She J; Zhou X
    PLoS One; 2021; 16(3):e0249351. PubMed ID: 33784352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorophyll content retrieval from hyperspectral remote sensing imagery.
    Yang X; Yu Y; Fan W
    Environ Monit Assess; 2015 Jul; 187(7):456. PubMed ID: 26095901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Dual NDVI Ratio Vegetation Index: A Kind of Vegetation Index Assessing Leaf Carotenoid Content Based on Leaf Optical Properties Model].
    Wang H; Shi R; Liu PD; Gao W
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jul; 36(7):2189-94. PubMed ID: 30035980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis.
    Cheng T; Rivard B; Sánchez-Azofeifa AG; Féret JB; Jacquemoud S; Ustin SL
    J Plant Physiol; 2012 Aug; 169(12):1134-42. PubMed ID: 22608180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Analysis of spectral response of vegetation leaf biochemical components].
    Sun L; Cheng LJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Nov; 30(11):3031-5. PubMed ID: 21284178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL models].
    Yang XG; Fan WY; Yu Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Nov; 30(11):3022-6. PubMed ID: 21284176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a generic approach to remote non-invasive estimation of foliar carotenoid-to-chlorophyll ratio.
    Gitelson A
    J Plant Physiol; 2020 Sep; 252():153227. PubMed ID: 32683162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PROSPECT-PMP+: Simultaneous Retrievals of Chlorophyll a and b, Carotenoids and Anthocyanins in the Leaf Optical Properties Model.
    Zhang Y; Li X; Wang C; Zhang R; Jin L; He Z; Tian S; Wu K; Wang F
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Simulation of vegetation indices optimizing under retrieval of vegetation biochemical parameters based on PROSPECT + SAIL model].
    Wu L; Liu XN; Zhou BT; Liu CH; Li LF
    Ying Yong Sheng Tai Xue Bao; 2012 Dec; 23(12):3250-6. PubMed ID: 23479863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-destructive estimation of foliar carotenoid content of tree species using merged vegetation indices.
    Fassnacht FE; Stenzel S; Gitelson AA
    J Plant Physiol; 2015 Mar; 176():210-7. PubMed ID: 25512167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A inversion model for remote sensing of leaf water content based on the leaf optical property].
    Fang MH; Ju WM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):167-71. PubMed ID: 25993842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From the Arctic to the tropics: multibiome prediction of leaf mass per area using leaf reflectance.
    Serbin SP; Wu J; Ely KS; Kruger EL; Townsend PA; Meng R; Wolfe BT; Chlus A; Wang Z; Rogers A
    New Phytol; 2019 Dec; 224(4):1557-1568. PubMed ID: 31418863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.