These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 33362151)
1. Realization of general first-order optical systems using thin lenses of arbitrary focal length and fixed free propagation distance. Yasir PAA J Opt Soc Am A Opt Image Sci Vis; 2021 Jan; 38(1):42-51. PubMed ID: 33362151 [TBL] [Abstract][Full Text] [Related]
2. Realization of general first-order optical systems using nine thin cylindrical lenses of arbitrary focal length and four units of free propagation distance. Yasir PAA J Opt Soc Am A Opt Image Sci Vis; 2021 May; 38(5):644-653. PubMed ID: 33983269 [TBL] [Abstract][Full Text] [Related]
3. Realization of first-order optical systems using thin convex lenses of fixed focal length. Yasir PA; Ivan JS J Opt Soc Am A Opt Image Sci Vis; 2014 Sep; 31(9):2011-20. PubMed ID: 25401441 [TBL] [Abstract][Full Text] [Related]
4. Realization of first-order optical systems using thin lenses of positive focal length. Ameen Yasir PA; Solomon Ivan J J Opt Soc Am A Opt Image Sci Vis; 2017 Nov; 34(11):2007-2012. PubMed ID: 29091651 [TBL] [Abstract][Full Text] [Related]
5. Holographic zoom micro-projection system based on three spatial light modulators. Wang D; Liu C; Wang QH Opt Express; 2019 Mar; 27(6):8048-8058. PubMed ID: 31052630 [TBL] [Abstract][Full Text] [Related]
7. Zeroth- and first-order long range non-diffracting Gauss-Bessel beams generated by annihilating multiple-charged optical vortices. Stoyanov L; Zhekova M; Stefanov A; Stefanov I; Paulus GG; Dreischuh A Sci Rep; 2020 Dec; 10(1):21981. PubMed ID: 33319796 [TBL] [Abstract][Full Text] [Related]
8. Michelson Interferometric Methods for Full Optical Complex Convolution. Kang H; Wang H; Ye J; Hu Z; George JK; Sorger VJ; Solyanik-Gorgone M; Movahhed Nouri B Nanomaterials (Basel); 2024 Jul; 14(15):. PubMed ID: 39120367 [TBL] [Abstract][Full Text] [Related]
9. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system. Zhang F; Zhu J; Song Q; Yue W; Liu J; Wang J; Situ G; Huang H Appl Opt; 2015 Oct; 54(30):8891-8. PubMed ID: 26560376 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of an arbitrary ABCD system with fixed lens positions. Bastiaans MJ; Alieva T Opt Lett; 2006 Aug; 31(16):2414-6. PubMed ID: 16880840 [TBL] [Abstract][Full Text] [Related]
12. Focal length variability and protein leakage as tools for measuring photooxidative damage to the lens. Wahlman J; Hirst M; Roberts JE; Prickett CD; Trevithick JR Photochem Photobiol; 2003 Jul; 78(1):88-92. PubMed ID: 12929754 [TBL] [Abstract][Full Text] [Related]
14. Paraxial design of four-component zoom lens with fixed position of optical center composed of members with variable focal length. Mikš A; Novák P Opt Express; 2018 Oct; 26(20):25611-25616. PubMed ID: 30469660 [TBL] [Abstract][Full Text] [Related]
16. Design of thin-film Luneburg lenses for maximum focal length control. Colombini E Appl Opt; 1981 Oct; 20(20):3589-93. PubMed ID: 20372223 [TBL] [Abstract][Full Text] [Related]
17. Fractional Fourier transform optical system with programmable diffractive lenses. Moreno I; Davis JA; Crabtree K Appl Opt; 2003 Nov; 42(32):6544-8. PubMed ID: 14650498 [TBL] [Abstract][Full Text] [Related]
18. Working distance comparison of plus lenses and reading telescopes. Krefman RA Am J Optom Physiol Opt; 1980 Nov; 57(11):835-8. PubMed ID: 7446692 [TBL] [Abstract][Full Text] [Related]
19. Realization of optical OFDM using time lenses and its comparison with optical OFDM using FFT. Yang D; Kumar S Opt Express; 2009 Sep; 17(20):17214-26. PubMed ID: 19907508 [TBL] [Abstract][Full Text] [Related]