These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 33362212)

  • 41. Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion.
    Pusch M; Ludewig U; Rehfeldt A; Jentsch TJ
    Nature; 1995 Feb; 373(6514):527-31. PubMed ID: 7845466
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extracellular zinc ion inhibits ClC-0 chloride channels by facilitating slow gating.
    Chen TY
    J Gen Physiol; 1998 Dec; 112(6):715-26. PubMed ID: 9834141
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure of the CLC-1 chloride channel from
    Park E; MacKinnon R
    Elife; 2018 May; 7():. PubMed ID: 29809153
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Glutamate 268 regulates transport probability of the anion/proton exchanger ClC-5.
    Grieschat M; Alekov AK
    J Biol Chem; 2012 Mar; 287(11):8101-9. PubMed ID: 22267722
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Different fast-gate regulation by external Cl(-) and H(+) of the muscle-type ClC chloride channels.
    Chen MF; Chen TY
    J Gen Physiol; 2001 Jul; 118(1):23-32. PubMed ID: 11429442
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Association between Hsp90 and the ClC-2 chloride channel upregulates channel function.
    Hinzpeter A; Lipecka J; Brouillard F; Baudoin-Legros M; Dadlez M; Edelman A; Fritsch J
    Am J Physiol Cell Physiol; 2006 Jan; 290(1):C45-56. PubMed ID: 16049054
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Determinants of slow gating in ClC-0, the voltage-gated chloride channel of Torpedo marmorata.
    Fong P; Rehfeldt A; Jentsch TJ
    Am J Physiol; 1998 Apr; 274(4):C966-73. PubMed ID: 9575793
    [TBL] [Abstract][Full Text] [Related]  

  • 48. pH-dependent interactions of Cd2+ and a carboxylate blocker with the rat C1C-1 chloride channel and its R304E mutant in the Sf-9 insect cell line.
    Rychkov GY; Astill DS; Bennetts B; Hughes BP; Bretag AH; Roberts ML
    J Physiol; 1997 Jun; 501 ( Pt 2)(Pt 2):355-62. PubMed ID: 9192307
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conformation-dependent regulation of inward rectifier chloride channel gating by extracellular protons.
    Arreola J; Begenisich T; Melvin JE
    J Physiol; 2002 May; 541(Pt 1):103-12. PubMed ID: 12015423
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electro-steric opening of the CLC-2 chloride channel gate.
    De Jesús-Pérez JJ; Méndez-Maldonado GA; López-Romero AE; Esparza-Jasso D; González-Hernández IL; De la Rosa V; Gastélum-Garibaldi R; Sánchez-Rodríguez JE; Arreola J
    Sci Rep; 2021 Jun; 11(1):13127. PubMed ID: 34162897
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activation of renal ClC-K chloride channels depends on an intact N terminus of their accessory subunit barttin.
    Wojciechowski D; Thiemann S; Schaal C; Rahtz A; de la Roche J; Begemann B; Becher T; Fischer M
    J Biol Chem; 2018 Jun; 293(22):8626-8637. PubMed ID: 29674316
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proton block of the CLC-5 Cl-/H+ exchanger.
    Picollo A; Malvezzi M; Accardi A
    J Gen Physiol; 2010 Jun; 135(6):653-9. PubMed ID: 20513761
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nonequilibrium gating and voltage dependence of the ClC-0 Cl- channel.
    Chen TY; Miller C
    J Gen Physiol; 1996 Oct; 108(4):237-50. PubMed ID: 8894974
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of an N-terminal amino acid of the CLC-3 chloride channel critical in phosphorylation-dependent activation of a CaMKII-activated chloride current.
    Robinson NC; Huang P; Kaetzel MA; Lamb FS; Nelson DJ
    J Physiol; 2004 Apr; 556(Pt 2):353-68. PubMed ID: 14754994
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Channel-like slippage modes in the human anion/proton exchanger ClC-4.
    Alekov AK; Fahlke C
    J Gen Physiol; 2009 May; 133(5):485-96. PubMed ID: 19364886
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Oxidation and reduction control of the inactivation gating of Torpedo ClC-0 chloride channels.
    Li Y; Yu WP; Lin CW; Chen TY
    Biophys J; 2005 Jun; 88(6):3936-45. PubMed ID: 15778445
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains.
    Garcia-Olivares J; Alekov A; Boroumand MR; Begemann B; Hidalgo P; Fahlke C
    J Physiol; 2008 Nov; 586(22):5325-36. PubMed ID: 18801843
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dual regulation of the native ClC-K2 chloride channel in the distal nephron by voltage and pH.
    Pinelli L; Nissant A; Edwards A; Lourdel S; Teulon J; Paulais M
    J Gen Physiol; 2016 Sep; 148(3):213-26. PubMed ID: 27574292
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural insights into chloride and proton-mediated gating of CLC chloride channels.
    Pusch M
    Biochemistry; 2004 Feb; 43(5):1135-44. PubMed ID: 14756549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.