These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 33362295)
1. Spectrally dependent linear depolarization and lidar ratios for nonspherical smoke aerosols. Liu L; Mishchenko MI J Quant Spectrosc Radiat Transf; 2020 Jun; 248():. PubMed ID: 33362295 [TBL] [Abstract][Full Text] [Related]
2. Assessing the depolarization capabilities of nonspherical particles in a super-ellipsoidal shape space. Bi L; Lin W; Liu D; Zhang K Opt Express; 2018 Jan; 26(2):1726-1742. PubMed ID: 29402043 [TBL] [Abstract][Full Text] [Related]
3. Linear depolarization of lidar returns by aged smoke particles. Mishchenko MI; Dlugach JM; Liu L Appl Opt; 2016 Dec; 55(35):9968-9973. PubMed ID: 27958398 [TBL] [Abstract][Full Text] [Related]
4. Simulated depolarization ratios for dust and smoke at laser wavelengths: implications for lidar application. Huang Z; Shen X; Tang S; Zhou T; Dong Q; Zhang S; Li M; Wang Y Opt Express; 2023 Mar; 31(6):10541-10553. PubMed ID: 37157599 [TBL] [Abstract][Full Text] [Related]
5. Forest fire smoke layers observed in the free troposphere over Portugal with a multiwavelength Raman lidar: optical and microphysical properties. Nepomuceno Pereira S; Preißler J; Guerrero-Rascado JL; Silva AM; Wagner F ScientificWorldJournal; 2014; 2014():421838. PubMed ID: 25114964 [TBL] [Abstract][Full Text] [Related]
6. Linear depolarization ratios of nitrate-coated mineral dust particles in haze episodes. Zhang X; Duan J; Dai C; Wei H Appl Opt; 2020 Mar; 59(7):2057-2064. PubMed ID: 32225727 [TBL] [Abstract][Full Text] [Related]
7. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba. Sakai T; Nagai T; Nakazato M; Mano Y; Matsumura T Appl Opt; 2003 Dec; 42(36):7103-16. PubMed ID: 14717284 [TBL] [Abstract][Full Text] [Related]
8. Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar. Liu Z; Sugimoto N; Murayama T Appl Opt; 2002 May; 41(15):2760-7. PubMed ID: 12027162 [TBL] [Abstract][Full Text] [Related]
9. Measurement of the lidar ratio for atmospheric aerosols with a 180 degrees backscatter nephelometer. Doherty SJ; Anderson TL; Charlson RJ Appl Opt; 1999 Mar; 38(9):1823-32. PubMed ID: 18305813 [TBL] [Abstract][Full Text] [Related]
10. Small lidar ratio of dust aerosol observed by Raman-polarization lidar near desert sources. Huang Z; Li M; Bi J; Shen X; Zhang S; Liu Q Opt Express; 2023 May; 31(10):16909-16919. PubMed ID: 37157759 [TBL] [Abstract][Full Text] [Related]
11. Lidar Ratio-Depolarization Ratio Relations of Atmospheric Dust Aerosols: The Super-Spheroid Model and High Spectral Resolution Lidar Observations. Kong S; Sato K; Bi L J Geophys Res Atmos; 2022 Feb; 127(4):e2021JD035629. PubMed ID: 35865334 [TBL] [Abstract][Full Text] [Related]
12. Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation. Mishchenko MI; Travis LD Appl Opt; 1994 Oct; 33(30):7206-25. PubMed ID: 20941276 [TBL] [Abstract][Full Text] [Related]
13. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution. Veselovskii I; Kolgotin A; Griaznov V; Müller D; Franke K; Whiteman DN Appl Opt; 2004 Feb; 43(5):1180-95. PubMed ID: 15008501 [TBL] [Abstract][Full Text] [Related]
15. Synergistic aircraft and ground observations of transported wildfire smoke and its impact on air quality in New York City during the summer 2018 LISTOS campaign. Wu Y; Nehrir AR; Ren X; Dickerson RR; Huang J; Stratton PR; Gronoff G; Kooi SA; Collins JE; Berkoff TA; Lei L; Gross B; Moshary F Sci Total Environ; 2021 Jun; 773():145030. PubMed ID: 33940711 [TBL] [Abstract][Full Text] [Related]
16. Classification of atmospheric aerosols and clouds by use of dual-polarization lidar measurements. Qi S; Huang Z; Ma X; Huang J; Zhou T; Zhang S; Dong Q; Bi J; Shi J Opt Express; 2021 Jul; 29(15):23461-23476. PubMed ID: 34614611 [TBL] [Abstract][Full Text] [Related]
17. Influence of particle aspect ratio on the midinfrared extinction spectra of wavelength-sized ice crystals. Wagner R; Benz S; Möhler O; Saathoff H; Schnaiter M; Leisner T J Phys Chem A; 2007 Dec; 111(50):13003-22. PubMed ID: 18004822 [TBL] [Abstract][Full Text] [Related]
18. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations. Sasano Y; Browell EV Appl Opt; 1989 May; 28(9):1670-9. PubMed ID: 20548724 [TBL] [Abstract][Full Text] [Related]
19. Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation. Müller D; Wandinger U; Ansmann A Appl Opt; 1999 Apr; 38(12):2358-68. PubMed ID: 18319801 [TBL] [Abstract][Full Text] [Related]
20. Imaginary refractive-index effects on desert-aerosol extinction versus backscatter relationships at 351 nm: numerical computations and comparison with Raman lidar measurements. Perrone MR; Barnaba F; De Tomasi F; Gobbi GP; Tafuro AM Appl Opt; 2004 Oct; 43(29):5531-41. PubMed ID: 15508611 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]