These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33362490)

  • 1. Feasibility and Safety of Bilateral Hybrid EEG/EOG Brain/Neural-Machine Interaction.
    Nann M; Peekhaus N; Angerhöfer C; Soekadar SR
    Front Hum Neurosci; 2020; 14():580105. PubMed ID: 33362490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG).
    Witkowski M; Cortese M; Cempini M; Mellinger J; Vitiello N; Soekadar SR
    J Neuroeng Rehabil; 2014 Dec; 11():165. PubMed ID: 25510922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living.
    Crea S; Nann M; Trigili E; Cordella F; Baldoni A; Badesa FJ; Catalán JM; Zollo L; Vitiello N; Aracil NG; Soekadar SR
    Sci Rep; 2018 Jul; 8(1):10823. PubMed ID: 30018334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand.
    Soekadar SR; Witkowski M; Vitiello N; Birbaumer N
    Biomed Tech (Berl); 2015 Jun; 60(3):199-205. PubMed ID: 25490027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Berlin Bimanual Test for Tetraplegia (BeBiTT): development, psychometric properties, and sensitivity to change in assistive hand exoskeleton application.
    Angerhöfer C; Vermehren M; Colucci A; Nann M; Koßmehl P; Niedeggen A; Kim WS; Chang WK; Paik NJ; Hömberg V; Soekadar SR
    J Neuroeng Rehabil; 2023 Jan; 20(1):17. PubMed ID: 36707885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid brain/neural interface and autonomous vision-guided whole-arm exoskeleton control to perform activities of daily living (ADLs).
    Catalán JM; Trigili E; Nann M; Blanco-Ivorra A; Lauretti C; Cordella F; Ivorra E; Armstrong E; Crea S; Alcañiz M; Zollo L; Soekadar SR; Vitiello N; García-Aracil N
    J Neuroeng Rehabil; 2023 May; 20(1):61. PubMed ID: 37149621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia.
    Soekadar SR; Witkowski M; Gómez C; Opisso E; Medina J; Cortese M; Cempini M; Carrozza MC; Cohen LG; Birbaumer N; Vitiello N
    Sci Robot; 2016 Dec; 1(1):. PubMed ID: 33157855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid EEG-EOG brain-computer interface system for practical machine control.
    Punsawad Y; Wongsawat Y; Parnichkun M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1360-3. PubMed ID: 21096331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An EEG-/EOG-Based Hybrid Brain-Computer Interface: Application on Controlling an Integrated Wheelchair Robotic Arm System.
    Huang Q; Zhang Z; Yu T; He S; Li Y
    Front Neurosci; 2019; 13():1243. PubMed ID: 31824245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An EEG/EMG/EOG-Based Multimodal Human-Machine Interface to Real-Time Control of a Soft Robot Hand.
    Zhang J; Wang B; Zhang C; Xiao Y; Wang MY
    Front Neurorobot; 2019; 13():7. PubMed ID: 30983986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG-EOG based Virtual Keyboard: Toward Hybrid Brain Computer Interface.
    Hosni SM; Shedeed HA; Mabrouk MS; Tolba MF
    Neuroinformatics; 2019 Jul; 17(3):323-341. PubMed ID: 30368637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up.
    Onose G; Grozea C; Anghelescu A; Daia C; Sinescu CJ; Ciurea AV; Spircu T; Mirea A; Andone I; Spânu A; Popescu C; Mihăescu AS; Fazli S; Danóczy M; Popescu F
    Spinal Cord; 2012 Aug; 50(8):599-608. PubMed ID: 22410845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A High Performance Spelling System based on EEG-EOG Signals With Visual Feedback.
    Lee MH; Williamson J; Won DO; Fazli S; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1443-1459. PubMed ID: 29985154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals.
    Jiang J; Zhou Z; Yin E; Yu Y; Hu D
    Biomed Mater Eng; 2014; 24(6):2919-25. PubMed ID: 25226998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid BCI web browser based on EEG and EOG signals.
    Shenghong He ; Tianyou Yu ; Zhenghui Gu ; Yuanqing Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1006-1009. PubMed ID: 29060044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An EOG-based wheelchair robotic arm system for assisting patients with severe spinal cord injuries.
    Huang Q; Chen Y; Zhang Z; He S; Zhang R; Liu J; Zhang Y; Shao M; Li Y
    J Neural Eng; 2019 Apr; 16(2):026021. PubMed ID: 30620927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.
    Ma J; Zhang Y; Cichocki A; Matsuno F
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):876-89. PubMed ID: 25398172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating neural correlates of locomotion transition via temporal relation of EEG and EOG-recorded eye movements.
    Mehra D; Tiwari A; Joshi D
    Comput Biol Med; 2021 May; 132():104350. PubMed ID: 33799217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury.
    Rohm M; Schneiders M; Müller C; Kreilinger A; Kaiser V; Müller-Putz GR; Rupp R
    Artif Intell Med; 2013 Oct; 59(2):133-42. PubMed ID: 24064256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.