BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33362743)

  • 1. Thiamine-Mediated Cooperation Between Auxotrophic
    Huang H; Qi M; Liu Y; Wang H; Wang X; Qiu Y; Lu Z
    Front Microbiol; 2020; 11():594052. PubMed ID: 33362743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiamine-Mediated Microbial Interaction between Auxotrophic Rhodococcus ruber ZM07 and Prototrophic Cooperators in the Tetrahydrofuran-Degrading Microbial Community H-1.
    Huang H; Wu H; Qi M; Wang H; Lu Z
    Microbiol Spectr; 2023 Jun; 11(3):e0454122. PubMed ID: 37125924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolite Cross-Feeding between Rhodococcus ruber YYL and Bacillus cereus MLY1 in the Biodegradation of Tetrahydrofuran under pH Stress.
    Liu Z; Huang H; Qi M; Wang X; Adebanjo OO; Lu Z
    Appl Environ Microbiol; 2019 Oct; 85(19):. PubMed ID: 31375492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH Stress-Induced Cooperation between
    Liu Z; He Z; Huang H; Ran X; Oluwafunmilayo AO; Lu Z
    Front Microbiol; 2017; 8():2297. PubMed ID: 29209303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enrichment and characterization of a highly efficient tetrahydrofuran-degrading bacterial culture.
    Huang H; Yu H; Qi M; Liu Z; Wang H; Lu Z
    Biodegradation; 2019 Dec; 30(5-6):467-479. PubMed ID: 31463639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High efficiency degradation of tetrahydrofuran (THF) using a membrane bioreactor: identification of THF-degrading cultures of Pseudonocardia sp. strain M1 and Rhodococcus ruber isolate M2.
    Daye KJ; Groff JC; Kirpekar AC; Mazumder R
    J Ind Microbiol Biotechnol; 2003 Dec; 30(12):705-14. PubMed ID: 14666425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus.
    Inoue D; Tsunoda T; Sawada K; Yamamoto N; Saito Y; Sei K; Ike M
    Biodegradation; 2016 Nov; 27(4-6):277-286. PubMed ID: 27623820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Successful bioaugmentation of an activated sludge reactor with Rhodococcus sp. YYL for efficient tetrahydrofuran degradation.
    Yao Y; Lu Z; Zhu F; Min H; Bian C
    J Hazard Mater; 2013 Oct; 261():550-8. PubMed ID: 23994653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical studies of pyrithiamine-resistant mutants of Escherichia coli K12.
    Kawasaki T; Sanemori H; Egi Y; Yoshida S; Yamada K
    J Biochem; 1976 May; 79(5):1035-42. PubMed ID: 783154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial Community Analysis Provides Insights into the Effects of Tetrahydrofuran on 1,4-Dioxane Biodegradation.
    Xiong Y; Mason OU; Lowe A; Zhou C; Chen G; Tang Y
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of Tetrahydrofuran by the Newly Isolated Filamentous Fungus
    Ren H; Li H; Wang H; Huang H; Lu Z
    Microorganisms; 2020 Aug; 8(8):. PubMed ID: 32764240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trehalose promotes Rhodococcus sp. strain YYL colonization in activated sludge under tetrahydrofuran (THF) stress.
    He Z; Zhang K; Wang H; Lv Z
    Front Microbiol; 2015; 6():438. PubMed ID: 26029182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limitation of thiamine pyrophosphate supply to growing Escherichia coli switches metabolism to efficient D-lactate formation.
    Tian K; Niu D; Liu X; Prior BA; Zhou L; Lu F; Singh S; Wang Z
    Biotechnol Bioeng; 2016 Jan; 113(1):182-8. PubMed ID: 26152364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation, identification and characterization of a novel Rhodococcus sp. strain in biodegradation of tetrahydrofuran and its medium optimization using sequential statistics-based experimental designs.
    Yao Y; Lv Z; Min H; Lv Z; Jiao H
    Bioresour Technol; 2009 Jun; 100(11):2762-9. PubMed ID: 19230656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actinomycetes Rhodococcus ruber CGMCC 17550 degrades neonicotinoid insecticide nitenpyram via a novel hydroxylation pathway and remediates nitenpyram in surface water.
    Dai ZL; Yang WL; Fan ZX; Guo L; Liu ZH; Dai YJ
    Chemosphere; 2021 May; 270():128670. PubMed ID: 33109355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Acrylamide on Energy Status and Survival of Bacteria of Different Systematic Groups.
    Maksimova YG; Mochalova EM; Demakov VA
    Dokl Biochem Biophys; 2020 May; 492(1):117-120. PubMed ID: 32632586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of phenol by a highly tolerant strain Rhodococcus ruber C1: Biochemical characterization and comparative genome analysis.
    Zhao T; Gao Y; Yu T; Zhang Y; Zhang Z; Zhang L; Zhang L
    Ecotoxicol Environ Saf; 2021 Jan; 208():111709. PubMed ID: 33396040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Chaperones
    Xu C; Tang L; Liang Y; Jiao S; Yu H; Luo H
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32102340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel tetrahydrofuran (THF) degradation-associated genes and cooperation patterns of a THF-degrading microbial community as revealed by metagenomic.
    Qi M; Huang H; Zhang Y; Wang H; Li H; Lu Z
    Chemosphere; 2019 Sep; 231():173-183. PubMed ID: 31129398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of different alkane hydroxylase systems in Rhodococcus ruber strain SP2B, an hexane-degrading actinomycete.
    Amouric A; Quéméneur M; Grossi V; Liebgott PP; Auria R; Casalot L
    J Appl Microbiol; 2010 Jun; 108(6):1903-16. PubMed ID: 19912429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.