BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 33362806)

  • 1. Leveraging Image Analysis to Compute 3D Plant Phenotypes Based on Voxel-Grid Plant Reconstruction.
    Das Choudhury S; Maturu S; Samal A; Stoerger V; Awada T
    Front Plant Sci; 2020; 11():521431. PubMed ID: 33362806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Holistic and component plant phenotyping using temporal image sequence.
    Das Choudhury S; Bashyam S; Qiu Y; Samal A; Awada T
    Plant Methods; 2018; 14():35. PubMed ID: 29760766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leveraging Image Analysis for High-Throughput Plant Phenotyping.
    Das Choudhury S; Samal A; Awada T
    Front Plant Sci; 2019; 10():508. PubMed ID: 31068958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PI-Plat: a high-resolution image-based 3D reconstruction method to estimate growth dynamics of rice inflorescence traits.
    Sandhu J; Zhu F; Paul P; Gao T; Dhatt BK; Ge Y; Staswick P; Yu H; Walia H
    Plant Methods; 2019; 15():162. PubMed ID: 31889986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional reconstruction and phenotype measurement of maize seedlings based on multi-view image sequences.
    Li Y; Liu J; Zhang B; Wang Y; Yao J; Zhang X; Fan B; Li X; Hai Y; Fan X
    Front Plant Sci; 2022; 13():974339. PubMed ID: 36119622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Accurate Skeleton Extraction Approach From 3D Point Clouds of Maize Plants.
    Wu S; Wen W; Xiao B; Guo X; Du J; Wang C; Wang Y
    Front Plant Sci; 2019; 10():248. PubMed ID: 30899271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel LiDAR-Based Instrument for High-Throughput, 3D Measurement of Morphological Traits in Maize and Sorghum.
    Thapa S; Zhu F; Walia H; Yu H; Ge Y
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29652788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MVS-Pheno: A Portable and Low-Cost Phenotyping Platform for Maize Shoots Using Multiview Stereo 3D Reconstruction.
    Wu S; Wen W; Wang Y; Fan J; Wang C; Gou W; Guo X
    Plant Phenomics; 2020; 2020():1848437. PubMed ID: 33313542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pheno4D: A spatio-temporal dataset of maize and tomato plant point clouds for phenotyping and advanced plant analysis.
    Schunck D; Magistri F; Rosu RA; Cornelißen A; Chebrolu N; Paulus S; Léon J; Behnke S; Stachniss C; Kuhlmann H; Klingbeil L
    PLoS One; 2021; 16(8):e0256340. PubMed ID: 34407122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PhenoTrack3D: an automatic high-throughput phenotyping pipeline to track maize organs over time.
    Daviet B; Fernandez R; Cabrera-Bosquet L; Pradal C; Fournier C
    Plant Methods; 2022 Dec; 18(1):130. PubMed ID: 36482291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structured Light-Based 3D Reconstruction System for Plants.
    Nguyen TT; Slaughter DC; Max N; Maloof JN; Sinha N
    Sensors (Basel); 2015 Jul; 15(8):18587-612. PubMed ID: 26230701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations.
    Hui F; Zhu J; Hu P; Meng L; Zhu B; Guo Y; Li B; Ma Y
    Ann Bot; 2018 Apr; 121(5):1079-1088. PubMed ID: 29509841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maize-IAS: a maize image analysis software using deep learning for high-throughput plant phenotyping.
    Zhou S; Chai X; Yang Z; Wang H; Yang C; Sun T
    Plant Methods; 2021 Apr; 17(1):48. PubMed ID: 33926480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement Method Based on Multispectral Three-Dimensional Imaging for the Chlorophyll Contents of Greenhouse Tomato Plants.
    Sun G; Wang X; Sun Y; Ding Y; Lu W
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31366151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voxel carving-based 3D reconstruction of sorghum identifies genetic determinants of light interception efficiency.
    Gaillard M; Miao C; Schnable JC; Benes B
    Plant Direct; 2020 Oct; 4(10):e00255. PubMed ID: 33073164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field-Based High-Throughput Phenotyping for Maize Plant Using 3D LiDAR Point Cloud Generated With a "Phenomobile".
    Qiu Q; Sun N; Bai H; Wang N; Fan Z; Wang Y; Meng Z; Li B; Cong Y
    Front Plant Sci; 2019; 10():554. PubMed ID: 31134110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast High Resolution Volume Carving for 3D Plant Shoot Reconstruction.
    Scharr H; Briese C; Embgenbroich P; Fischbach A; Fiorani F; Müller-Linow M
    Front Plant Sci; 2017; 8():1680. PubMed ID: 29033961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A miniaturized phenotyping platform for individual plants using multi-view stereo 3D reconstruction.
    Wu S; Wen W; Gou W; Lu X; Zhang W; Zheng C; Xiang Z; Chen L; Guo X
    Front Plant Sci; 2022; 13():897746. PubMed ID: 36003825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel mesh processing based technique for 3D plant analysis.
    Paproki A; Sirault X; Berry S; Furbank R; Fripp J
    BMC Plant Biol; 2012 May; 12():63. PubMed ID: 22553969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Modeling of Weed Plants Using Low-Cost Photogrammetry.
    Andújar D; Calle M; Fernández-Quintanilla C; Ribeiro Á; Dorado J
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29614039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.