These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 33362815)

  • 1. Impacts of Arctic Shrubs on Root Traits and Belowground Nutrient Cycles Across a Northern Alaskan Climate Gradient.
    Chen W; Tape KD; Euskirchen ES; Liang S; Matos A; Greenberg J; Fraterrigo JM
    Front Plant Sci; 2020; 11():588098. PubMed ID: 33362815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition.
    McLaren JR; Buckeridge KM; van de Weg MJ; Shaver GR; Schimel JP; Gough L
    Ecology; 2017 May; 98(5):1361-1376. PubMed ID: 28263375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Above- and belowground responses of Arctic tundra ecosystems to altered soil nutrients and mammalian herbivory.
    Gough L; Moore JC; Shaver GR; Simpson RT; Johnson DR
    Ecology; 2012 Jul; 93(7):1683-94. PubMed ID: 22919914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arctic plant ecophysiology and water source utilization in response to altered snow: isotopic (δ
    Jespersen RG; Leffler AJ; Oberbauer SF; Welker JM
    Oecologia; 2018 Aug; 187(4):1009-1023. PubMed ID: 29955988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shrub canopies influence soil temperatures but not nutrient dynamics: An experimental test of tundra snow-shrub interactions.
    Myers-Smith IH; Hik DS
    Ecol Evol; 2013 Oct; 3(11):3683-700. PubMed ID: 24198933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arctic rooting depth distribution influences modelled carbon emissions but cannot be inferred from aboveground vegetation type.
    Blume-Werry G; Dorrepaal E; Keuper F; Kummu M; Wild B; Weedon JT
    New Phytol; 2023 Oct; 240(2):502-514. PubMed ID: 37227127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline.
    Parker TC; Subke JA; Wookey PA
    Glob Chang Biol; 2015 May; 21(5):2070-81. PubMed ID: 25367088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan arctic tundra.
    Boelman NT; Gough L; Wingfield J; Goetz S; Asmus A; Chmura HE; Krause JS; Perez JH; Sweet SK; Guay KC
    Glob Chang Biol; 2015 Apr; 21(4):1508-20. PubMed ID: 25294359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to warming in High Arctic tundra.
    Blok D; Faucherre S; Banyasz I; Rinnan R; Michelsen A; Elberling B
    Glob Chang Biol; 2018 Jun; 24(6):2660-2672. PubMed ID: 29235209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycobiont contribution to tundra plant acquisition of permafrost-derived nitrogen.
    Hewitt RE; DeVan MR; Lagutina IV; Genet H; McGuire AD; Taylor DL; Mack MC
    New Phytol; 2020 Apr; 226(1):126-141. PubMed ID: 31580482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental Limits of Tall Shrubs in Alaska's Arctic National Parks.
    Swanson DK
    PLoS One; 2015; 10(9):e0138387. PubMed ID: 26379243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arctic shrub growth trajectories differ across soil moisture levels.
    Ackerman D; Griffin D; Hobbie SE; Finlay JC
    Glob Chang Biol; 2017 Oct; 23(10):4294-4302. PubMed ID: 28267242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition.
    DeMarco J; Mack MC; Bret-Harte MS
    Ecology; 2014 Jul; 95(7):1861-75. PubMed ID: 25163119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expansion of deciduous tall shrubs but not evergreen dwarf shrubs inhibited by reindeer in Scandes mountain range.
    Vowles T; Gunnarsson B; Molau U; Hickler T; Klemedtsson L; Björk RG
    J Ecol; 2017 Nov; 105(6):1547-1561. PubMed ID: 29200500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NDVI changes in the Arctic: Functional significance in the moist acidic tundra of Northern Alaska.
    Jespersen RG; Anderson-Smith M; Sullivan PF; Dial RJ; Welker JM
    PLoS One; 2023; 18(4):e0285030. PubMed ID: 37115765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO
    Christiansen CT; Lafreniére MJ; Henry GHR; Grogan P
    Glob Chang Biol; 2018 Aug; 24(8):3508-3525. PubMed ID: 29411950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential ecophysiological response of deciduous shrubs and a graminoid to long-term experimental snow reductions and additions in moist acidic tundra, Northern Alaska.
    Pattison RR; Welker JM
    Oecologia; 2014 Feb; 174(2):339-50. PubMed ID: 24052332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal thaw and landscape position determine foliar functional traits and whole-plant water use in tall shrubs on the low arctic tundra.
    Black KL; Wallace CA; Baltzer JL
    New Phytol; 2021 Jul; 231(1):94-107. PubMed ID: 33774820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Growth and Expansion of Birch Shrubs Across a Low Arctic Landscape in Continental Canada: Are These Responses More a Consequence of the Severely Declining Caribou Herd than of Climate Warming?
    Andruko R; Danby R; Grogan P
    Ecosystems; 2020; 23(7):1362-1379. PubMed ID: 33214772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhizosphere allocation by canopy-forming species dominates soil CO
    Parker TC; Clemmensen KE; Friggens NL; Hartley IP; Johnson D; Lindahl BD; Olofsson J; Siewert MB; Street LE; Subke JA; Wookey PA
    New Phytol; 2020 Sep; 227(6):1818-1830. PubMed ID: 32248524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.