BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 3336367)

  • 1. DNase I- and micrococcal nuclease-hypersensitive sites in the human apolipoprotein B gene are tissue specific.
    Levy-Wilson B; Fortier C; Blackhart BD; McCarthy BJ
    Mol Cell Biol; 1988 Jan; 8(1):71-80. PubMed ID: 3336367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclease-hypersensitive sites define a region with enhancer activity in the third intron of the human apolipoprotein B gene.
    Levy-Wilson B; Paulweber B; Nagy BP; Ludwig EH; Brooks AR
    J Biol Chem; 1992 Sep; 267(26):18735-43. PubMed ID: 1527004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNaseI hypersensitive sites at the 3' end of the human apolipoprotein B gene.
    Levy-Wilson B
    Biochem Biophys Res Commun; 1990 Aug; 171(1):162-8. PubMed ID: 2168168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analysis of mouse rDNA: coincidence between nuclease hypersensitive sites, DNA curvature and regulatory elements in the intergenic spacer.
    Längst G; Schätz T; Langowski J; Grummt I
    Nucleic Acids Res; 1997 Feb; 25(3):511-7. PubMed ID: 9016589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-specific undermethylation of DNA sequences at the 5' end of the human apolipoprotein B gene.
    Levy-Wilson B; Fortier C
    J Biol Chem; 1989 Jun; 264(17):9891-6. PubMed ID: 2470766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A close association between sites of DNase I hypersensitivity and sites of enhanced cleavage by micrococcal nuclease in the 5'-flanking region of the actively transcribed ovalbumin gene.
    Kaye JS; Bellard M; Dretzen G; Bellard F; Chambon P
    EMBO J; 1984 May; 3(5):1137-44. PubMed ID: 6329739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Similarities and differences in the function of regulatory elements at the 5' end of the human apolipoprotein B gene in cultured hepatoma (HepG2) and colon carcinoma (CaCo-2) cells.
    Paulweber B; Onasch MA; Nagy BP; Levy-Wilson B
    J Biol Chem; 1991 Dec; 266(35):24149-60. PubMed ID: 1660892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An open chromatin structure in a liver-specific enhancer that confers high level expression to human apolipoprotein b transgenes in mice.
    Levy-Wilson B; Paulweber B; Antes TJ; Goodart SA; Lee SY
    Mol Cell Biol Res Commun; 2000 Oct; 4(4):206-11. PubMed ID: 11409913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNase I hypersensitive regions correlate with a site-specific endogenous nuclease activity on the r-chromatin of Tetrahymena.
    Bonven B; Westergaard O
    Nucleic Acids Res; 1982 Dec; 10(23):7593-608. PubMed ID: 6218482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An interaction between the 5' flanking distal and proximal regulatory domains of the rat prolactin gene is required for transcriptional activation by estrogens.
    Seyfred MA; Gorski J
    Mol Endocrinol; 1990 Aug; 4(8):1226-34. PubMed ID: 1963474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclease sensitivity and functional analysis of a maize histone H3 gene promoter.
    Brignon P; Lepetit M; Gigot C; Chaubet N
    Plant Mol Biol; 1993 Sep; 22(6):1007-15. PubMed ID: 8400121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucocorticoids locally disrupt an array of positioned nucleosomes on the rat tyrosine aminotransferase promoter in hepatoma cells.
    Carr KD; Richard-Foy H
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9300-4. PubMed ID: 1979170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Structural and functional chromatin organization of the SUP35 gene in Saccharomyces cerevisiae yeast].
    Riabinkova NA; Vodop'ianova LG; Samsonova MG; Miasikova EM; Osipova TN
    Genetika; 1997 Apr; 33(4):451-7. PubMed ID: 9206662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promoter regions of four Balbiani ring genes in Chironomus tentans exhibit a common salivary gland-specific chromatin organisation, which is independent of the rate of transcriptional initiation.
    Belikov S; Paulsson G; Wieslander L
    Mol Gen Genet; 1998 May; 258(4):420-6. PubMed ID: 9648748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNase I and micrococcal nuclease analysis of the tomato proteinase inhibitor I gene in chromatin.
    Conconi A; Ryan CA
    J Biol Chem; 1993 Jan; 268(1):430-5. PubMed ID: 8416948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutritional regulation of nucleosomal structure at the chicken malic enzyme promoter in liver.
    Ma XJ; Goodridge AG
    Nucleic Acids Res; 1992 Oct; 20(19):4997-5002. PubMed ID: 1408817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNase I-hypersensitive sites in the chromatin of immunoglobulin kappa light chain genes.
    Chung SY; Folsom V; Wooley J
    Proc Natl Acad Sci U S A; 1983 May; 80(9):2427-31. PubMed ID: 6221340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in chromatin structure at the replication fork. DNase I and trypsin-micrococcal nuclease effects on approximately 300- and 150-base pair nascent DNAs.
    Galili G; Levy A; Jakob KM
    J Biol Chem; 1983 Sep; 258(18):11274-9. PubMed ID: 6224796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple protein-DNA interactions over the yeast HSC82 heat shock gene promoter.
    Erkine AM; Adams CC; Gao M; Gross DS
    Nucleic Acids Res; 1995 May; 23(10):1822-9. PubMed ID: 7784189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypersensitive sites in the 5' and 3' flanking regions of the cysteine proteinase I gene of Dictyostelium discoideum.
    Pavlovic J; Banz E; Parish RW
    Nucleic Acids Res; 1986 Nov; 14(22):8703-22. PubMed ID: 3024117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.