These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics. Holm DD Chaos; 2002 Jun; 12(2):518-530. PubMed ID: 12779582 [TBL] [Abstract][Full Text] [Related]
3. Stochastic modelling in fluid dynamics: Itô versus Stratonovich. Holm DD Proc Math Phys Eng Sci; 2020 May; 476(2237):20190812. PubMed ID: 32518504 [TBL] [Abstract][Full Text] [Related]
4. Stokes drift and its discontents. Vanneste J; Young WR Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2225):20210032. PubMed ID: 35465713 [TBL] [Abstract][Full Text] [Related]
5. Stokes drift. van den Bremer TS; Breivik Ø Philos Trans A Math Phys Eng Sci; 2018 Jan; 376(2111):. PubMed ID: 29229803 [TBL] [Abstract][Full Text] [Related]
6. Particle dynamics and mixing in the frequency driven "Kelvin cat eyes" flow. Tsega Y; Michaelides EE; Eschenazi EV Chaos; 2001 Jun; 11(2):351-358. PubMed ID: 12779469 [TBL] [Abstract][Full Text] [Related]
8. Hamiltonian Computational Chemistry: Geometrical Structures in Chemical Dynamics and Kinetics. Farantos SC Entropy (Basel); 2024 Apr; 26(5):. PubMed ID: 38785648 [TBL] [Abstract][Full Text] [Related]
9. Variational principles for stochastic fluid dynamics. Holm DD Proc Math Phys Eng Sci; 2015 Apr; 471(2176):20140963. PubMed ID: 27547083 [TBL] [Abstract][Full Text] [Related]
10. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics. Cotter CJ; Gottwald GA; Holm DD Proc Math Phys Eng Sci; 2017 Sep; 473(2205):20170388. PubMed ID: 28989316 [TBL] [Abstract][Full Text] [Related]
11. Modelling vortex-induced fluid-structure interaction. Benaroya H; Gabbai RD Philos Trans A Math Phys Eng Sci; 2008 Apr; 366(1868):1231-74. PubMed ID: 17984032 [TBL] [Abstract][Full Text] [Related]
12. The effect of Lagrangian chaos on locking bifurcations in shear flows. Finn JM Chaos; 2002 Jun; 12(2):508-517. PubMed ID: 12779581 [TBL] [Abstract][Full Text] [Related]
13. An electromechanical model of neuronal dynamics using Hamilton's principle. Drapaca CS Front Cell Neurosci; 2015; 9():271. PubMed ID: 26236195 [TBL] [Abstract][Full Text] [Related]
14. Lagrangian chaos and Eulerian chaos in shear flow dynamics. Finn JM; Del-Castillo-Negrete D Chaos; 2001 Dec; 11(4):816-832. PubMed ID: 12779521 [TBL] [Abstract][Full Text] [Related]
15. On the Formulation of Lagrangian Stochastic Models for Heavy-Particle Trajectories. Reynolds AM J Colloid Interface Sci; 2000 Dec; 232(2):260-268. PubMed ID: 11097759 [TBL] [Abstract][Full Text] [Related]
16. Comparison of a fixed-grid and arbitrary Lagrangian-Eulerian methods on modelling fluid-structure interaction of the aortic valve. Joda A; Jin Z; Summers J; Korossis S Proc Inst Mech Eng H; 2019 May; 233(5):544-553. PubMed ID: 30922162 [TBL] [Abstract][Full Text] [Related]
17. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment. Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372 [TBL] [Abstract][Full Text] [Related]
18. Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry. Umeyama M Philos Trans A Math Phys Eng Sci; 2012 Apr; 370(1964):1687-702. PubMed ID: 22393117 [TBL] [Abstract][Full Text] [Related]
19. Eulerian method for computing multivalued solutions of the Euler-Poisson equations and applications to wave breaking in klystrons. Li X; Wöhlbier JG; Jin S; Booske JH Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016502. PubMed ID: 15324179 [TBL] [Abstract][Full Text] [Related]