These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33364922)

  • 1. Endolymphatic Potential Measured From Developing and Adult Mouse Inner Ear.
    Li Y; Liu H; Zhao X; He DZ
    Front Cell Neurosci; 2020; 14():584928. PubMed ID: 33364922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of Endolymph Secretion and Endolymphatic Potential Generation in the Vertebrate Inner Ear.
    Köppl C; Wilms V; Russell IJ; Nothwang HG
    Brain Behav Evol; 2018; 92(1-2):1-31. PubMed ID: 30415265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Visualization of endolymphatic hydrops in 3D-FLAIR MRI after intratympanic Gd-DTPA administration in Meniere's disease patients].
    Zhang DG; Shi HL; Fan ZM; Wang GB; Han YC; Li YW; Wang HB
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2013 Aug; 48(8):628-33. PubMed ID: 24195817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium concentration in cochlear endolymph after vestibular labyrinth injury.
    Ikeda R; Nakaya K; Oshima T; Kawase T; Kobayashi T
    Neuroreport; 2010 Jun; 21(9):651-5. PubMed ID: 20535852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elemental composition of the developing inner ear.
    Anniko M; Wroblewski R
    Ann Otol Rhinol Laryngol; 1981; 90(1 Pt 1):25-32. PubMed ID: 6970538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal and morphological changes in the endolymph of patients with vestibular schwannoma on non-contrast 3D FLAIR at 3 Tesla.
    Osawa I; Kozawa E; Tanaka S; Kaizu A; Inoue K; Ikezono T; Fujimaki T; Niitsu M
    BMC Med Imaging; 2021 Sep; 21(1):135. PubMed ID: 34563164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embryogenesis of the inner ear. IV. Post-natal maturation of the secretory epithelia of the inner ear in correlation with the elemental composition in the endolymphatic space.
    Anniko M; Nordemar H
    Arch Otorhinolaryngol; 1980; 229(3-4):281-8. PubMed ID: 6970572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [
    Zhao D; Tong BS; Duan ML
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2020 Apr; 55(4):378-383. PubMed ID: 32306636
    [No Abstract]   [Full Text] [Related]  

  • 9. Obliteration of the ductus reuniens.
    Kimura RS; Schuknecht HF; Ota CY; Jones DD
    Acta Otolaryngol; 1980; 89(3-4):295-309. PubMed ID: 6967248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of the electrochemistry and osmotic relationships of the cochlear fluids in the neonatal rat at the time of the development of the endocochlear potential.
    Bosher SK; Warren RL
    J Physiol; 1971 Feb; 212(3):739-61. PubMed ID: 5557069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of inner ear MRI in patients with Ménière's disease by comparing endolymphatic hydrops from histopathologic specimens.
    Cho YS; Kim JS; Kim MB; Koh SM; Lee CH; Kim YK; Kim HJ; Chung WH
    Sci Rep; 2021 Sep; 11(1):17738. PubMed ID: 34489538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The morphology and electrophysiology of the cochlea of the miniature pig.
    Guo W; Yi H; Ren L; Chen L; Zhao L; Sun W; Yang SM
    Anat Rec (Hoboken); 2015 Mar; 298(3):494-500. PubMed ID: 25394601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization and functional studies of pendrin in the mouse inner ear provide insight about the etiology of deafness in pendred syndrome.
    Royaux IE; Belyantseva IA; Wu T; Kachar B; Everett LA; Marcus DC; Green ED
    J Assoc Res Otolaryngol; 2003 Sep; 4(3):394-404. PubMed ID: 14690057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The difference in endolymphatic hydrostatic pressure elevation induced by isoproterenol between the ampulla and the cochlea.
    Inamoto R; Miyashita T; Matsubara A; Hoshikawa H; Mori N
    Auris Nasus Larynx; 2017 Jun; 44(3):282-287. PubMed ID: 27527642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of efferent neurotransmitters in the inner ear of the homozygous Bronx waltzer mutant mouse.
    Kong WJ; Scholtz AW; Hussl B; Kammen-Jolly K; Schrott-Fischer A
    Hear Res; 2002 May; 167(1-2):136-55. PubMed ID: 12117537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. K+ cycling and the endocochlear potential.
    Wangemann P
    Hear Res; 2002 Mar; 165(1-2):1-9. PubMed ID: 12031509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of artificial endolymph injection into the cochlear duct on the endocochlear potential.
    Kakigi A; Takeda T
    Hear Res; 1998 Feb; 116(1-2):113-8. PubMed ID: 9508034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic environment of cochlear hair cells.
    Anniko M; Wróblewski R
    Hear Res; 1986; 22():279-93. PubMed ID: 3525484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of sodium transport in the inner ear.
    Kim SH; Marcus DC
    Hear Res; 2011 Oct; 280(1-2):21-9. PubMed ID: 21620939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation in inner ear of tree shrew using scanning electron microscope and the Atoh1 distribution in cochlea.
    He J; Lu S; Mo W; Tang A; Tan S; Liu L; Fang Q; Xie L
    Microsc Res Tech; 2022 May; 85(5):1837-1844. PubMed ID: 34962020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.