These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33367355)

  • 41. A new solid phase microextraction method using organic ligand in micropipette tip syringe system packed with modified carbon cloth for preconcentration of cadmium in drinking water and blood samples of kidney failure patients.
    Panhwar AH; Kazi TG; Afridi HI; Arain SA; Naeemullah ; Brahman KD; Arain MS
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():296-302. PubMed ID: 25498826
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A New Chelating Reagent: Its Synthesis/Characterization and Application for the Determination of Cd(II) and Ni(II) in Various Food and Make-Up Product Samples by FAAS Using Simultaneous Microextraction Sampling.
    Saçmacı Ş; Saçmacı M
    J AOAC Int; 2016 Jul; 99(4):1058-1065. PubMed ID: 27301349
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry: ultra trace determination of cadmium in water samples.
    Zeini Jahromi E; Bidari A; Assadi Y; Milani Hosseini MR; Jamali MR
    Anal Chim Acta; 2007 Mar; 585(2):305-11. PubMed ID: 17386679
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultrasonic assisted dispersive liquid-liquid microextraction method based on deep eutectic solvent for speciation, preconcentration and determination of selenium species (IV) and (VI) in water and food samples.
    Panhwar AH; Tuzen M; Kazi TG
    Talanta; 2017 Dec; 175():352-358. PubMed ID: 28842002
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Combination of dispersive solid phase extraction and deep eutectic solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography-mass spectrometry as an efficient analytical method for the quantification of some tricyclic antidepressant drugs in biological fluids.
    Mohebbi A; Yaripour S; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2018 Oct; 1571():84-93. PubMed ID: 30119972
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Trace determination of cobalt in biological fluids based on preconcentration with a new competitive ligand using dispersive liquid-liquid microextraction combined with slotted quartz tube-flame atomic absorption spectrophotometry.
    Öztürk Er E; Bakırdere EG; Unutkan T; Bakırdere S
    J Trace Elem Med Biol; 2018 Sep; 49():13-18. PubMed ID: 29895362
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Separation and determination of copper in bottled water samples by combination of dispersive liquid--liquid microextraction and microsample introduction flame atomic absorption spectrometry.
    Citak D; Tuzen M
    J AOAC Int; 2013; 96(6):1435-9. PubMed ID: 24645526
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Separation and preconcentration of trace amounts of rhodium using a dispersive liquid-liquid microextraction method and its determination by flame atomic absorption spectrometry.
    Mirrahimi F; Taher MA
    J AOAC Int; 2014; 97(3):933-7. PubMed ID: 25051646
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On-line ionic liquid-based preconcentration system coupled to flame atomic absorption spectrometry for trace cadmium determination in plastic food packaging materials.
    Martinis EM; Olsina RA; Altamirano JC; Wuilloud RG
    Talanta; 2009 May; 78(3):857-62. PubMed ID: 19269441
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A green, accurate and sensitive analytical method based on vortex assisted deep eutectic solvent-liquid phase microextraction for the determination of cobalt by slotted quartz tube flame atomic absorption spectrometry.
    Tekin Z; Unutkan T; Erulaş F; Bakırdere EG; Bakırdere S
    Food Chem; 2020 Apr; 310():125825. PubMed ID: 31753689
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new supramolecular based liquid solid microextraction method for preconcentration and determination of trace bismuth in human blood serum and hair samples by electrothermal atomic absorption spectrometry.
    Kahe H; Chamsaz M
    Environ Monit Assess; 2016 Nov; 188(11):601. PubMed ID: 27699649
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A simple, rapid and low cost reversed-phase dispersive liquid-liquid microextraction for the determination of Na, K, Ca and Mg in biodiesel.
    Lourenço EC; Eyng E; Bittencourt PRS; Duarte FA; Picoloto RS; Flores ÉLM
    Talanta; 2019 Jul; 199():1-7. PubMed ID: 30952232
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simple approach based on ultrasound-assisted emulsification-microextraction for determination of polibrominated flame retardants in water samples by gas chromatography-mass spectrometry.
    Fontana AR; Wuilloud RG; Martínez LD; Altamirano JC
    J Chromatogr A; 2009 Jan; 1216(1):147-53. PubMed ID: 19054523
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Solvent microextraction-flame atomic absorption spectrometry (SME-FAAS) for determination of ultratrace amounts of cadmium in meat and fish samples.
    Goudarzi N
    J Agric Food Chem; 2009 Feb; 57(3):1099-104. PubMed ID: 19138082
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Separation/preconcentration and determination of cadmium ions by solidification of floating organic drop microextraction and FI-AAS.
    Dadfarnia S; Shabani AM; Kamranzadeh E
    Talanta; 2009 Sep; 79(4):1061-5. PubMed ID: 19615509
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimized ultrasound-assisted emulsification microextraction for simultaneous trace multielement determination of heavy metals in real water samples by ICP-OES.
    Sereshti H; Heravi YE; Samadi S
    Talanta; 2012 Aug; 97():235-41. PubMed ID: 22841073
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop.
    Shamsipur M; Fattahi N; Assadi Y; Sadeghi M; Sharafi K
    Talanta; 2014 Dec; 130():26-32. PubMed ID: 25159375
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultrasound-assisted emulsification solidified floating organic drops microextraction of ultra trace amount of Te (IV) prior to graphite furnace atomic absorption spectrometry determination.
    Fathirad F; Afzali D; Mostafavi A; Ghanbarian M
    Talanta; 2012 Jan; 88():759-64. PubMed ID: 22265571
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of ultrasound-assisted emulsification and dispersive liquid-liquid microextraction methods for the speciation of inorganic selenium in environmental water samples using low density extraction solvents.
    Najafi NM; Tavakoli H; Abdollahzadeh Y; Alizadeh R
    Anal Chim Acta; 2012 Feb; 714():82-8. PubMed ID: 22244140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of lead in milk samples using vortex assisted deep eutectic solvent based liquid phase microextraction-slotted quartz tube-flame atomic absorption spectrometry system.
    Borahan T; Unutkan T; Turan NB; Turak F; Bakırdere S
    Food Chem; 2019 Nov; 299():125065. PubMed ID: 31284246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.