These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33367408)

  • 21. Balancing Catalytic Activity and Interface Energetics of Electrocatalyst-Coated Photoanodes for Photoelectrochemical Water Splitting.
    Xu Z; Wang H; Wen Y; Li W; Sun C; He Y; Shi Z; Pei L; Chen Y; Yan S; Zou Z
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3624-3633. PubMed ID: 29308871
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoelectrochemical Properties and Behavior of α-SnWO
    Zhu Z; Sarker P; Zhao C; Zhou L; Grimm RL; Huda MN; Rao PM
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1459-1470. PubMed ID: 27991759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visible Light Driven Photoanodes for Water Oxidation Based on Novel r-GO/β-Cu₂V₂O₇/TiO₂ Nanorods Composites.
    Girardi L; Shuang S; Rizzi GA; Sartorel A; Marega C; Zhang Z; Granozzi G
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30022003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BiVO
    Baek JH; Kim BJ; Han GS; Hwang SW; Kim DR; Cho IS; Jung HS
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1479-1487. PubMed ID: 27989115
    [TBL] [Abstract][Full Text] [Related]  

  • 25. WO
    Ma Z; Song K; Wang L; Gao F; Tang B; Hou H; Yang W
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):889-897. PubMed ID: 30560657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The optimization of surface morphology of Au nanoparticles on WO
    Jun J; Ju S; Moon S; Son S; Huh D; Liu Y; Kim K; Lee H
    Nanotechnology; 2020 May; 31(20):204003. PubMed ID: 31995544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Spin Coating Method To Deposit Iridium-Based Catalysts onto Silicon for Water Oxidation Photoanodes.
    Ben-Naim M; Palm DW; Strickler AL; Nielander AC; Sanchez J; King LA; Higgins DC; Jaramillo TF
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5901-5908. PubMed ID: 31971770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Commercially Available WO
    Reinhard S; Rechberger F; Niederberger M
    Chempluschem; 2016 Sep; 81(9):935-940. PubMed ID: 31968792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study.
    Zhang T; Zhu Z; Chen H; Bai Y; Xiao S; Zheng X; Xue Q; Yang S
    Nanoscale; 2015 Feb; 7(7):2933-40. PubMed ID: 25587830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting.
    Feng X; Chen Y; Qin Z; Wang M; Guo L
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18089-96. PubMed ID: 27347739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mössbauerite as Iron-Only Layered Oxyhydroxide Catalyst for WO
    Ertl M; Ma Z; Thersleff T; Lyu P; Huettner S; Nachtigall P; Breu J; Slabon A
    Inorg Chem; 2019 Aug; 58(15):9655-9662. PubMed ID: 31310522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effective silicon nanowire arrays/WO
    Chen Z; Ning M; Ma G; Meng Q; Zhang Y; Gao J; Jin M; Chen Z; Yuan M; Wang X; Liu JM; Zhou G
    Nanotechnology; 2017 Jul; 28(27):275401. PubMed ID: 28531092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A significant cathodic shift in the onset potential and enhanced photoelectrochemical water splitting using Au nanoparticles decorated WO3 nanorod array.
    Xu F; Yao Y; Bai D; Xu R; Mei J; Wu D; Gao Z; Jiang K
    J Colloid Interface Sci; 2015 Nov; 458():194-9. PubMed ID: 26218199
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of molybdenum doping on the structural, optical and electronic properties of WO
    Kalanur SS; Seo H
    J Colloid Interface Sci; 2018 Jan; 509():440-447. PubMed ID: 28923741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation.
    Rao PM; Cai L; Liu C; Cho IS; Lee CH; Weisse JM; Yang P; Zheng X
    Nano Lett; 2014 Feb; 14(2):1099-105. PubMed ID: 24437363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation.
    Kim ES; Nishimura N; Magesh G; Kim JY; Jang JW; Jun H; Kubota J; Domen K; Lee JS
    J Am Chem Soc; 2013 Apr; 135(14):5375-83. PubMed ID: 23463951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large-Scale Tunable 3D Self-Supporting WO
    Cai M; Fan P; Long J; Han J; Lin Y; Zhang H; Zhong M
    ACS Appl Mater Interfaces; 2017 May; 9(21):17856-17864. PubMed ID: 28485917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The synergistic effect of surface and bulk O vacancies in a WO
    Zhao Q; Hao Z; Meng Y; Liu Z
    Dalton Trans; 2022 Apr; 51(16):6454-6463. PubMed ID: 35389417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly Efficient Photoelectrochemical Hydrogen Generation Using Zn(x)Bi2S(3+x) Sensitized Platelike WO₃ Photoelectrodes.
    Liu C; Yang Y; Li W; Li J; Li Y; Shi Q; Chen Q
    ACS Appl Mater Interfaces; 2015 May; 7(20):10763-70. PubMed ID: 25942616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.