BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33367430)

  • 1. Intracellular optical probing with gold nanostars.
    Spedalieri C; Szekeres GP; Werner S; Guttmann P; Kneipp J
    Nanoscale; 2021 Jan; 13(2):968-979. PubMed ID: 33367430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the Intracellular Bio-Nano Interface in Different Cell Lines with Gold Nanostars.
    Spedalieri C; Szekeres GP; Werner S; Guttmann P; Kneipp J
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33946192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models.
    Register JK; Fales AM; Wang HN; Norton SJ; Cho EH; Boico A; Pradhan S; Kim J; Schroeder T; Wisniewski NA; Klitzman B; Vo-Dinh T
    Anal Bioanal Chem; 2015 Nov; 407(27):8215-24. PubMed ID: 26337748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral Characterization and Intracellular Detection of Surface-Enhanced Raman Scattering (SERS)-Encoded Plasmonic Gold Nanostars.
    Yuan H; Fales AM; Khoury CG; Liu J; Vo-Dinh T
    J Raman Spectrosc; 2013 Feb; 44(2):234-239. PubMed ID: 24839346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications.
    Li M; Cushing SK; Zhang J; Lankford J; Aguilar ZP; Ma D; Wu N
    Nanotechnology; 2012 Mar; 23(11):115501. PubMed ID: 22383452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection.
    Yuan H; Liu Y; Fales AM; Li YL; Liu J; Vo-Dinh T
    Anal Chem; 2013 Jan; 85(1):208-12. PubMed ID: 23194068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix-Independent Surface-Enhanced Raman Scattering Detection of Uranyl Using Electrospun Amidoximated Polyacrylonitrile Mats and Gold Nanostars.
    Lu G; Johns AJ; Neupane B; Phan HT; Cwiertny DM; Forbes TZ; Haes AJ
    Anal Chem; 2018 Jun; 90(11):6766-6772. PubMed ID: 29741873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced graphene oxide-supported gold nanostars for improved SERS sensing and drug delivery.
    Wang Y; Polavarapu L; Liz-Marzán LM
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21798-805. PubMed ID: 24827538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of nanostars as a biocompatible tumor contrast agent: toward in vivo SERS imaging.
    D'Hollander A; Mathieu E; Jans H; Vande Velde G; Stakenborg T; Van Dorpe P; Himmelreich U; Lagae L
    Int J Nanomedicine; 2016; 11():3703-14. PubMed ID: 27536107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold Nanostar Spatial Distribution Impacts the Surface-Enhanced Raman Scattering Detection of Uranyl on Amidoximated Polymers.
    Phan HT; Vinson C; Haes AJ
    Langmuir; 2021 Apr; 37(16):4891-4899. PubMed ID: 33861606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications.
    Vo-Dinh T; Liu Y; Fales AM; Ngo H; Wang HN; Register JK; Yuan H; Norton SJ; Griffin GD
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(1):17-33. PubMed ID: 25316579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic properties of regiospecific core-satellite assemblies of gold nanostars and nanospheres.
    Indrasekara AS; Thomas R; Fabris L
    Phys Chem Chem Phys; 2015 Sep; 17(33):21133-42. PubMed ID: 25380028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram.
    Zhu J; Liu MJ; Li JJ; Li X; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():586-593. PubMed ID: 28881284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning gold nanostar morphology for the SERS detection of uranyl.
    Harder RA; Wijenayaka LA; Phan HT; Haes AJ
    J Raman Spectrosc; 2021 Feb; 52(2):497-505. PubMed ID: 34177076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars.
    Su Q; Ma X; Dong J; Jiang C; Qian W
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1873-9. PubMed ID: 21528839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SERS Probing of Proteins in Gold Nanoparticle Agglomerates.
    Szekeres GP; Kneipp J
    Front Chem; 2019; 7():30. PubMed ID: 30766868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragmentation of Proteins in the Corona of Gold Nanoparticles As Observed in Live Cell Surface-Enhanced Raman Scattering.
    Szekeres GP; Montes-Bayón M; Bettmer J; Kneipp J
    Anal Chem; 2020 Jun; 92(12):8553-8560. PubMed ID: 32420733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive SERS-based immunoassay with simultaneous utilization of self-assembled substrates of gold nanostars and aggregates of gold nanostars.
    Pei Y; Wang Z; Zong S; Cui Y
    J Mater Chem B; 2013 Aug; 1(32):3992-3998. PubMed ID: 32261225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive
    Nicolson F; Andreiuk B; Andreou C; Hsu HT; Rudder S; Kircher MF
    Theranostics; 2019; 9(20):5899-5913. PubMed ID: 31534527
    [No Abstract]   [Full Text] [Related]  

  • 20. Relating the composition and interface interactions in the hard corona of gold nanoparticles to the induced response mechanisms in living cells.
    Peter Szekeres G; Werner S; Guttmann P; Spedalieri C; Drescher D; Živanović V; Montes-Bayón M; Bettmer J; Kneipp J
    Nanoscale; 2020 Sep; 12(33):17450-17461. PubMed ID: 32856032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.