BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33367488)

  • 1. RNA transfer through tunneling nanotubes.
    Haimovich G; Dasgupta S; Gerst JE
    Biochem Soc Trans; 2021 Feb; 49(1):145-160. PubMed ID: 33367488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunneling Nanotube-Mediated Communication: A Mechanism of Intercellular Nucleic Acid Transfer.
    Driscoll J; Gondaliya P; Patel T
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite functions of actin regulatory complexes.
    Delage E; Cervantes DC; Pénard E; Schmitt C; Syan S; Disanza A; Scita G; Zurzolo C
    Sci Rep; 2016 Dec; 6():39632. PubMed ID: 28008977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunneling nanotubes and tumor microtubes-Emerging data on their roles in intercellular communication and pathophysiology: Summary of an International FASEB Catalyst Conference October 2023.
    Lou E; Vérollet C; Winkler F; Zurzolo C; Valdebenito-Silva S; Eugenin E
    FASEB J; 2024 Mar; 38(5):e23514. PubMed ID: 38466151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wiring through tunneling nanotubes--from electrical signals to organelle transfer.
    Abounit S; Zurzolo C
    J Cell Sci; 2012 Mar; 125(Pt 5):1089-98. PubMed ID: 22399801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking.
    Sáenz-de-Santa-María I; Henderson JM; Pepe A; Zurzolo C
    Curr Protoc; 2023 Nov; 3(11):e939. PubMed ID: 37994667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myo10 is a key regulator of TNT formation in neuronal cells.
    Gousset K; Marzo L; Commere PH; Zurzolo C
    J Cell Sci; 2013 Oct; 126(Pt 19):4424-35. PubMed ID: 23886947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells.
    Bukoreshtliev NV; Wang X; Hodneland E; Gurke S; Barroso JF; Gerdes HH
    FEBS Lett; 2009 May; 583(9):1481-8. PubMed ID: 19345217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunneling nanotubes: emerging view of their molecular components and formation mechanisms.
    Kimura S; Hase K; Ohno H
    Exp Cell Res; 2012 Aug; 318(14):1699-706. PubMed ID: 22652450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunneling nanotubes: The transport highway for astrocyte-neuron communication in the central nervous system.
    Zhou C; Huang M; Wang S; Chu S; Zhang Z; Chen N
    Brain Res Bull; 2024 Apr; 209():110921. PubMed ID: 38447659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-level communication of human retinal pigment epithelial cells via tunneling nanotubes.
    Wittig D; Wang X; Walter C; Gerdes HH; Funk RH; Roehlecke C
    PLoS One; 2012; 7(3):e33195. PubMed ID: 22457742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular basis of induction and formation of tunneling nanotubes.
    Kimura S; Hase K; Ohno H
    Cell Tissue Res; 2013 Apr; 352(1):67-76. PubMed ID: 23229356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bridging the Gap: Virus Long-Distance Spread via Tunneling Nanotubes.
    Jansens RJJ; Tishchenko A; Favoreel HW
    J Virol; 2020 Mar; 94(8):. PubMed ID: 32024778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of long-distance cell-to-cell communication and autophagosome transfer in squamous cell carcinoma via tunneling nanotubes.
    Sáenz-de-Santa-María I; Bernardo-Castiñeira C; Enciso E; García-Moreno I; Chiara JL; Suarez C; Chiara MD
    Oncotarget; 2017 Mar; 8(13):20939-20960. PubMed ID: 28423494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Ways of Actin: Why Tunneling Nanotubes Are Unique Cell Protrusions.
    Ljubojevic N; Henderson JM; Zurzolo C
    Trends Cell Biol; 2021 Feb; 31(2):130-142. PubMed ID: 33309107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic and Functional Alterations in Tunneling Nanotubes Formed by Glaucomatous Trabecular Meshwork Cells.
    Sun YY; Bradley JM; Keller KE
    Invest Ophthalmol Vis Sci; 2019 Nov; 60(14):4583-4595. PubMed ID: 31675075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunneling nanotubes: Reshaping connectivity.
    Zurzolo C
    Curr Opin Cell Biol; 2021 Aug; 71():139-147. PubMed ID: 33866130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rab11a-Rab8a cascade regulates the formation of tunneling nanotubes through vesicle recycling.
    Zhu S; Bhat S; Syan S; Kuchitsu Y; Fukuda M; Zurzolo C
    J Cell Sci; 2018 Oct; 131(19):. PubMed ID: 30209134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunneling Nanotubes are Novel Cellular Structures That Communicate Signals Between Trabecular Meshwork Cells.
    Keller KE; Bradley JM; Sun YY; Yang YF; Acott TS
    Invest Ophthalmol Vis Sci; 2017 Oct; 58(12):5298-5307. PubMed ID: 29049733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell communication by tunneling nanotubes: Implications in disease and therapeutic applications.
    Mittal R; Karhu E; Wang JS; Delgado S; Zukerman R; Mittal J; Jhaveri VM
    J Cell Physiol; 2019 Feb; 234(2):1130-1146. PubMed ID: 30206931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.