These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33367690)

  • 1. Improving circRNA-disease association prediction by sequence and ontology representations with convolutional and recurrent neural networks.
    Lu C; Zeng M; Wu FX; Li M; Wang J
    Bioinformatics; 2021 Apr; 36(24):5656-5664. PubMed ID: 33367690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network.
    Wang L; You ZH; Huang YA; Huang DS; Chan KCC
    Bioinformatics; 2020 Jul; 36(13):4038-4046. PubMed ID: 31793982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prioritizing CircRNA-Disease Associations With Convolutional Neural Network Based on Multiple Similarity Feature Fusion.
    Fan C; Lei X; Pan Y
    Front Genet; 2020; 11():540751. PubMed ID: 33193615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network.
    Lu C; Zhang L; Zeng M; Lan W; Duan G; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36572658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs.
    Dai Q; Liu Z; Wang Z; Duan X; Guo M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm.
    Wang L; You ZH; Li YM; Zheng K; Huang YA
    PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CircRNA identification and feature interpretability analysis.
    Niu M; Wang C; Chen Y; Zou Q; Qi R; Xu L
    BMC Biol; 2024 Feb; 22(1):44. PubMed ID: 38408987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Matrix Factorization Improves Prediction of Human CircRNA-Disease Associations.
    Lu C; Zeng M; Zhang F; Wu FX; Li M; Wang J
    IEEE J Biomed Health Inform; 2021 Mar; 25(3):891-899. PubMed ID: 32750925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MNMDCDA: prediction of circRNA-disease associations by learning mixed neighborhood information from multiple distances.
    Li Y; Hu XG; Wang L; Li PP; You ZH
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36384071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting CircRNA disease associations using novel node classification and link prediction models on Graph Convolutional Networks.
    Bamunu Mudiyanselage T; Lei X; Senanayake N; Zhang Y; Pan Y
    Methods; 2022 Feb; 198():32-44. PubMed ID: 34748953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. circMeta: a unified computational framework for genomic feature annotation and differential expression analysis of circular RNAs.
    Chen L; Wang F; Bruggeman EC; Li C; Yao B
    Bioinformatics; 2020 Jan; 36(2):539-545. PubMed ID: 31373611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting circRNA-RBP Binding Sites Using a Hybrid Deep Neural Network.
    Liu L; Wei Y; Tan Z; Zhang Q; Sun J; Zhao Q
    Interdiscip Sci; 2024 Feb; ():. PubMed ID: 38381315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GGAECDA: Predicting circRNA-disease associations using graph autoencoder based on graph representation learning.
    Li G; Lin Y; Luo J; Xiao Q; Liang C
    Comput Biol Chem; 2022 Aug; 99():107722. PubMed ID: 35810557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting circRNA-drug resistance associations based on a multimodal graph representation learning framework.
    Liu Z; Dai Q; Yu X; Duan X; Wang C
    IEEE J Biomed Health Inform; 2023 Jul; PP():. PubMed ID: 37498762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Back-splicing sites for CircRNA formation based on convolutional neural networks.
    Shen Z; Shao YL; Liu W; Zhang Q; Yuan L
    BMC Genomics; 2022 Aug; 23(1):581. PubMed ID: 35962324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GCNCMI: A Graph Convolutional Neural Network Approach for Predicting circRNA-miRNA Interactions.
    He J; Xiao P; Chen C; Zhu Z; Zhang J; Deng L
    Front Genet; 2022; 13():959701. PubMed ID: 35991563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRMSS: predicting circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features.
    Zhang L; Lu C; Zeng M; Li Y; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36511222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GMNN2CD: identification of circRNA-disease associations based on variational inference and graph Markov neural networks.
    Niu M; Zou Q; Wang C
    Bioinformatics; 2022 Apr; 38(8):2246-2253. PubMed ID: 35157027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.