These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 33367874)
1. Gall- and erineum-forming Eriophyes mites alter photosynthesis and volatile emissions in an infection severity-dependent manner in broad-leaved trees Alnus glutinosa and Tilia cordata. Jiang Y; Ye J; Veromann-Jürgenson LL; Niinemets Ü Tree Physiol; 2021 Jul; 41(7):1122-1142. PubMed ID: 33367874 [TBL] [Abstract][Full Text] [Related]
2. Oak gall wasp infections of Quercus robur leaves lead to profound modifications in foliage photosynthetic and volatile emission characteristics. Jiang Y; Veromann-Jürgenson LL; Ye J; Niinemets Ü Plant Cell Environ; 2018 Jan; 41(1):160-175. PubMed ID: 28776716 [TBL] [Abstract][Full Text] [Related]
3. Petiole gall aphid ( Ye J; Jiang Y; Veromann-Jürgenson LL; Niinemets Ü Trees (Berl West); 2019 Feb; 33(1):37-51. PubMed ID: 31700201 [TBL] [Abstract][Full Text] [Related]
4. Eriophyes species (Acari: Eriophyoidea) inhabiting lime trees (Tilia spp.: Tiliaceae)--supplementary description and morphological variability related to host plants and female forms. Soika G; Kozak M Zootaxa; 2013; 3646():349-85. PubMed ID: 26213770 [TBL] [Abstract][Full Text] [Related]
5. Scaling of photosynthesis and constitutive and induced volatile emissions with severity of leaf infection by rust fungus (Melampsora larici-populina) in Populus balsamifera var. suaveolens. Jiang Y; Ye J; Veromann LL; Niinemets Ü Tree Physiol; 2016 Jul; 36(7):856-72. PubMed ID: 27225874 [TBL] [Abstract][Full Text] [Related]
6. Gall mite (Eriophyes laevis) infestation and leaf removal affect growth of leaf area in black alder (Alnus glutinosa) short shoots. Vuorisalo T; Walls M; Kuitunen H Oecologia; 1990 Aug; 84(1):122-125. PubMed ID: 28312785 [TBL] [Abstract][Full Text] [Related]
7. Volatile emissions from Alnus glutionosa induced by herbivory are quantitatively related to the extent of damage. Copolovici L; Kännaste A; Remmel T; Vislap V; Niinemets U J Chem Ecol; 2011 Jan; 37(1):18-28. PubMed ID: 21181243 [TBL] [Abstract][Full Text] [Related]
8. Contrasting responses of major and minor volatile compounds to warming and gall-infestation in the Arctic willow Salix myrsinites. Swanson L; Li T; Rinnan R Sci Total Environ; 2021 Nov; 793():148516. PubMed ID: 34174616 [TBL] [Abstract][Full Text] [Related]
9. Primary and secondary host plants differ in leaf-level photosynthetic response to herbivory: evidence from Alnus and Betula grazed by the alder beetle, Agelastica alni. Oleksyn J; Karolewski P; Giertych MJ; Zytkowiak R; Reich PB; Tjoelker MG New Phytol; 1998 Oct; 140(2):239-249. PubMed ID: 33862847 [TBL] [Abstract][Full Text] [Related]
10. Induction of photosynthesis and importance of limitations during the induction phase in sun and shade leaves of five ecologically contrasting tree species from the temperate zone. Urban O; Kosvancová M; Marek MV; Lichtenthaler HK Tree Physiol; 2007 Aug; 27(8):1207-15. PubMed ID: 17472946 [TBL] [Abstract][Full Text] [Related]
11. Oak powdery mildew (Erysiphe alphitoides)-induced volatile emissions scale with the degree of infection in Quercus robur. Copolovici L; Väärtnõu F; Portillo Estrada M; Niinemets Ü Tree Physiol; 2014 Dec; 34(12):1399-410. PubMed ID: 25428827 [TBL] [Abstract][Full Text] [Related]
12. Photosynthetic capacity in relation to nitrogen in the canopy of a Quercus robur, Fraxinus angustifolia and Tilia cordata flood plain forest. Kazda M; Salzer J; Reiter I Tree Physiol; 2000 Sep; 20(15):1029-37. PubMed ID: 11305457 [TBL] [Abstract][Full Text] [Related]
13. Volatile organic compound emissions from Copolovici L; Kännaste A; Remmel T; Niinemets Ü Environ Exp Bot; 2014 Apr; 100():55-63. PubMed ID: 29367790 [TBL] [Abstract][Full Text] [Related]
14. Differential impact of crown rust (Puccinia coronata) infection on photosynthesis and volatile emissions in the primary host Avena sativa and the alternate host Rhamnus frangula. Sulaiman HY; Runno-Paurson E; Kaurilind E; Niinemets Ü J Exp Bot; 2023 Mar; 74(6):2029-2046. PubMed ID: 36610799 [TBL] [Abstract][Full Text] [Related]
16. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment. Temperton VM; Grayston SJ; Jackson G; Barton CV; Millard P; Jarvis PG Tree Physiol; 2003 Oct; 23(15):1051-9. PubMed ID: 12975129 [TBL] [Abstract][Full Text] [Related]
17. Shoot structure and growth along a vertical profile within a Populus-Tilia canopy. Kull O; Tulva I Tree Physiol; 2002 Nov; 22(15-16):1167-75. PubMed ID: 12414376 [TBL] [Abstract][Full Text] [Related]
18. A gall-inducing arthropod drives declines in canopy tree photosynthesis. Patankar R; Thomas SC; Smith SM Oecologia; 2011 Nov; 167(3):701-9. PubMed ID: 21618011 [TBL] [Abstract][Full Text] [Related]
19. Controls on methane emissions from Alnus glutinosa saplings. Pangala SR; Gowing DJ; Hornibrook ERC; Gauci V New Phytol; 2014 Feb; 201(3):887-896. PubMed ID: 24219654 [TBL] [Abstract][Full Text] [Related]
20. Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field. Hallik L; Niinemets U; Kull O Plant Biol (Stuttg); 2012 Jan; 14(1):88-99. PubMed ID: 21972867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]