BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 33367927)

  • 1. Critical role of mTOR in regulating aerobic glycolysis in carcinogenesis (Review).
    Fan H; Wu Y; Yu S; Li X; Wang A; Wang S; Chen W; Lu Y
    Int J Oncol; 2021 Jan; 58(1):9-19. PubMed ID: 33367927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. STK25-induced inhibition of aerobic glycolysis via GOLPH3-mTOR pathway suppresses cell proliferation in colorectal cancer.
    Wu F; Gao P; Wu W; Wang Z; Yang J; Di J; Jiang B; Su X
    J Exp Clin Cancer Res; 2018 Jul; 37(1):144. PubMed ID: 29996891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma.
    Makinoshima H; Takita M; Saruwatari K; Umemura S; Obata Y; Ishii G; Matsumoto S; Sugiyama E; Ochiai A; Abe R; Goto K; Esumi H; Tsuchihara K
    J Biol Chem; 2015 Jul; 290(28):17495-504. PubMed ID: 26023239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic Effects between mTOR Complex 1/2 and Glycolysis Inhibitors in Non-Small-Cell Lung Carcinoma Cells.
    Jiang S; Zou Z; Nie P; Wen R; Xiao Y; Tang J
    PLoS One; 2015; 10(7):e0132880. PubMed ID: 26176608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the mTOR pathway in tumor malignancy.
    Cheng H; Walls M; Baxi SM; Yin MJ
    Curr Cancer Drug Targets; 2013 Mar; 13(3):267-77. PubMed ID: 23297825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth.
    Sun Q; Chen X; Ma J; Peng H; Wang F; Zha X; Wang Y; Jing Y; Yang H; Chen R; Chang L; Zhang Y; Goto J; Onda H; Chen T; Wang MR; Lu Y; You H; Kwiatkowski D; Zhang H
    Proc Natl Acad Sci U S A; 2011 Mar; 108(10):4129-34. PubMed ID: 21325052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NFκB up-regulation of glucose transporter 3 is essential for hyperactive mammalian target of rapamycin-induced aerobic glycolysis and tumor growth.
    Zha X; Hu Z; Ji S; Jin F; Jiang K; Li C; Zhao P; Tu Z; Chen X; Di L; Zhou H; Zhang H
    Cancer Lett; 2015 Apr; 359(1):97-106. PubMed ID: 25578782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting mTOR and Metabolism in Cancer: Lessons and Innovations.
    Magaway C; Kim E; Jacinto E
    Cells; 2019 Dec; 8(12):. PubMed ID: 31817676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased Expression of MPC2 Contributes to Aerobic Glycolysis and Colorectal Cancer Proliferation by Activating mTOR Pathway.
    Kuerbanjiang M; Gu L; Xu C; Xu WT; Wen S; Xue H; Xu Q
    J Immunol Res; 2021; 2021():6618837. PubMed ID: 33791391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect.
    Lu CL; Qin L; Liu HC; Candas D; Fan M; Li JJ
    PLoS One; 2015; 10(3):e0121046. PubMed ID: 25807077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [mTOR inhibitor].
    Muro K
    Gan To Kagaku Ryoho; 2011 Jan; 38(1):7-11. PubMed ID: 21368454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mTOR Signaling in Metabolism and Cancer.
    Huang S
    Cells; 2020 Oct; 9(10):. PubMed ID: 33065976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mTOR inhibitors: facing new challenges ahead.
    Mavrommati I; Maffucci T
    Curr Med Chem; 2011; 18(18):2743-62. PubMed ID: 21649581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic Approach of KRAS Mutant Tumours by the Combination of Pharmacologic Ascorbate and Chloroquine.
    Kapuy O; Makk-Merczel K; Szarka A
    Biomolecules; 2021 Apr; 11(5):. PubMed ID: 33925206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells.
    Woo YM; Shin Y; Lee EJ; Lee S; Jeong SH; Kong HK; Park EY; Kim HK; Han J; Chang M; Park JH
    PLoS One; 2015; 10(7):e0132285. PubMed ID: 26158266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PDK4 protein promotes tumorigenesis through activation of cAMP-response element-binding protein (CREB)-Ras homolog enriched in brain (RHEB)-mTORC1 signaling cascade.
    Liu Z; Chen X; Wang Y; Peng H; Wang Y; Jing Y; Zhang H
    J Biol Chem; 2014 Oct; 289(43):29739-49. PubMed ID: 25164809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current treatment strategies for inhibiting mTOR in cancer.
    Chiarini F; Evangelisti C; McCubrey JA; Martelli AM
    Trends Pharmacol Sci; 2015 Feb; 36(2):124-35. PubMed ID: 25497227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting mTOR inhibitors as anticancer agents.
    Teng QX; Ashar YV; Gupta P; Gadee E; Fan YF; Reznik SE; Wurpel JND; Chen ZS
    Drug Discov Today; 2019 Oct; 24(10):2086-2095. PubMed ID: 31173912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knockdown of KRT17 decreases osteosarcoma cell proliferation and the Warburg effect via the AKT/mTOR/HIF1α pathway.
    Yan X; Yang C; Hu W; Chen T; Wang Q; Pan F; Qiu B; Tang B
    Oncol Rep; 2020 Jul; 44(1):103-114. PubMed ID: 32627037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hitting the golden TORget: curcumin's effects on mTOR signaling.
    Beevers CS; Zhou H; Huang S
    Anticancer Agents Med Chem; 2013 Sep; 13(7):988-94. PubMed ID: 23272912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.