BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 33368320)

  • 1. Valorisation of fungal hydrolysates of exhausted sugar beet pulp for lactic acid production.
    Marzo C; Díaz AB; Caro I; Blandino A
    J Sci Food Agric; 2021 Aug; 101(10):4108-4117. PubMed ID: 33368320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of exhausted sugar beet pulp as raw material for lactic acid production.
    Díaz AB; González C; Marzo C; Caro I; Blandino A
    J Sci Food Agric; 2020 May; 100(7):3036-3045. PubMed ID: 32057099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production.
    Berlowska J; Cieciura W; Borowski S; Dudkiewicz M; Binczarski M; Witonska I; Otlewska A; Kregiel D
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27763527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arabinose fermentation by Lactobacillus plantarum in sourdough with added pentosans and alphaalpha-L-arabinofuranosidase: a tool to increase the production of acetic acid.
    Gobbetti M; Lavermicocca P; Minervini F; de Angelis M; Corsetti A
    J Appl Microbiol; 2000 Feb; 88(2):317-24. PubMed ID: 10736001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Valorisation of food waste via fungal hydrolysis and lactic acid fermentation with Lactobacillus casei Shirota.
    Kwan TH; Hu Y; Lin CS
    Bioresour Technol; 2016 Oct; 217():129-36. PubMed ID: 26873283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cultivation and growth dynamics of endophytic fungi in a solid culture medium based on sugar beet pulp.
    Vázquez-de-Aldana BR; Cuesta MJ; Zabalgogeazcoa I
    J Sci Food Agric; 2020 Jan; 100(1):441-446. PubMed ID: 31512241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of Exhausted Sugar Beet Pulp into Fermentable Sugars from a Biorefinery Approach.
    Marzo C; Díaz AB; Caro I; Blandino A
    Foods; 2020 Sep; 9(10):. PubMed ID: 32987649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Simple Biorefinery Concept to Produce 2G-Lactic Acid from Sugar Beet Pulp (SBP): A High-Value Target Approach to Valorize a Waste Stream.
    Oliveira RA; Schneider R; Lunelli BH; Rossell CEV; Filho RM; Venus J
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32365990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactic acid production from food waste hydrolysate by Lactobacillus pentosus: Focus on nitrogen supplementation, initial sugar concentration, pH, and fed-batch fermentation.
    Lobeda K; Jin Q; Wu J; Zhang W; Huang H
    J Food Sci; 2022 Jul; 87(7):3071-3083. PubMed ID: 35669993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of L-lactic acid from a mixture of xylose and glucose by co-cultivation of lactic acid bacteria.
    Taniguchi M; Tokunaga T; Horiuchi K; Hoshino K; Sakai K; Tanaka T
    Appl Microbiol Biotechnol; 2004 Dec; 66(2):160-5. PubMed ID: 15558273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploitation of acid-tolerant microbial species for the utilization of low-cost whey in the production of acetic acid and propylene glycol.
    Veeravalli SS; Mathews AP
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):8023-8033. PubMed ID: 29946931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of D-lactic acid from sugarcane molasses, sugarcane juice and sugar beet juice by Lactobacillus delbrueckii.
    Calabia BP; Tokiwa Y
    Biotechnol Lett; 2007 Sep; 29(9):1329-32. PubMed ID: 17541505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermentative lactic acid production from seaweed hydrolysate using Lactobacillus sp. And Weissella sp.
    Nagarajan D; Oktarina N; Chen PT; Chen CY; Lee DJ; Chang JS
    Bioresour Technol; 2022 Jan; 344(Pt A):126166. PubMed ID: 34678452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orange peels: from by-product to resource through lactic acid fermentation.
    Ricci A; Diaz AB; Caro I; Bernini V; Galaverna G; Lazzi C; Blandino A
    J Sci Food Agric; 2019 Dec; 99(15):6761-6767. PubMed ID: 31353470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greener L-lactic acid production through in situ extractive fermentation by an acid-tolerant Lactobacillus strain.
    Singhvi M; Zendo T; Gokhale D; Sonomoto K
    Appl Microbiol Biotechnol; 2018 Aug; 102(15):6425-6435. PubMed ID: 29799089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-lactic acid production by Lactobacillus casei fermentation with corn steep liquor-supplemented acid-hydrolysate of soybean meal.
    Li Z; Ding S; Li Z; Tan T
    Biotechnol J; 2006 Dec; 1(12):1453-8. PubMed ID: 17089436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated hydrolyzation and fermentation of sugar beet pulp to bioethanol.
    Rezić T; Oros D; Marković I; Kracher D; Ludwig R; Santek B
    J Microbiol Biotechnol; 2013 Sep; 23(9):1244-52. PubMed ID: 23851274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection of the Strain Lactobacillus acidophilus ATCC 43121 and Its Application to Brewers' Spent Grain Conversion into Lactic Acid.
    Liguori R; Soccol CR; Vandenberghe LP; Woiciechowski AL; Ionata E; Marcolongo L; Faraco V
    Biomed Res Int; 2015; 2015():240231. PubMed ID: 26640784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the Fermentation Potential of Pulp Mill Residue to Produce D(-)-Lactic Acid by Separate Hydrolysis and Fermentation Using Lactobacillus coryniformis subsp. torquens.
    de Oliveira Moraes A; Ramirez NI; Pereira N
    Appl Biochem Biotechnol; 2016 Dec; 180(8):1574-1585. PubMed ID: 27424161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hydrothermal pretreatment of sugar beet pulp for methane production.
    Ziemiński K; Romanowska I; Kowalska-Wentel M; Cyran M
    Bioresour Technol; 2014 Aug; 166():187-93. PubMed ID: 24907578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.