BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33368397)

  • 21. Grid removal and impact on population dose in full-field digital mammography.
    Gennaro G; Katz L; Souchay H; Klausz R; Alberelli C; di Maggio C
    Med Phys; 2007 Feb; 34(2):547-55. PubMed ID: 17388172
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A software-based x-ray scatter correction method for breast tomosynthesis.
    Jia Feng SS; Sechopoulos I
    Med Phys; 2011 Dec; 38(12):6643-53. PubMed ID: 22149846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging properties of digital magnification radiography.
    Boyce SJ; Samei E
    Med Phys; 2006 Apr; 33(4):984-96. PubMed ID: 16696475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of dose reduction potential in scatter-corrected bedside chest radiography using U-net.
    Onodera S; Lee Y; Tanaka Y
    Radiol Phys Technol; 2020 Dec; 13(4):336-347. PubMed ID: 32986183
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gridless adult cervical spine radiography and its' effect on image quality and radiation dose: A phantom study.
    Mekis N; Bianchi T; Doyle C; Gauchat M; Geerling I; Linneman J; Staats S; Campeanu C
    Radiography (Lond); 2024 Jan; 30(1):359-366. PubMed ID: 38141429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A semianalytic model to investigate the potential applications of x-ray scatter imaging.
    Leclair RJ; Johns PC
    Med Phys; 1998 Jun; 25(6):1008-20. PubMed ID: 9650191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel technique for determination of two dimensional signal-to-noise ratio improvement factor of an antiscatter grid in digital radiography.
    Nøtthellen J; Konst B; Abildgaard A
    Phys Med Biol; 2014 Aug; 59(15):4213-25. PubMed ID: 25017397
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transmission characteristics of a two dimensional antiscatter grid prototype for CBCT.
    Altunbas C; Kavanagh B; Alexeev T; Miften M
    Med Phys; 2017 Aug; 44(8):3952-3964. PubMed ID: 28513847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT).
    Jin JY; Ren L; Liu Q; Kim J; Wen N; Guan H; Movsas B; Chetty IJ
    Med Phys; 2010 Nov; 37(11):5634-44. PubMed ID: 21158275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The principles and effectiveness of X-ray scatter correction software for diagnostic X-ray imaging: A scoping review.
    Sayed M; Knapp KM; Fulford J; Heales C; Alqahtani SJ
    Eur J Radiol; 2023 Jan; 158():110600. PubMed ID: 36444818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of scatter in digital mammography from physical measurements.
    Leon SM; Brateman LF; Wagner LK
    Med Phys; 2014 Jun; 41(6):061901. PubMed ID: 24877812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scatter radiation intensities around a clinical digital breast tomosynthesis unit and the impact on radiation shielding considerations.
    Yang K; Li X; Liu B
    Med Phys; 2016 Mar; 43(3):1096-110. PubMed ID: 26936697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physical evaluation of prototype high-performance anti-scatter grids: potential for improved digital radiographic image quality.
    Fetterly KA; Schueler BA
    Phys Med Biol; 2009 Jan; 54(2):N37-42. PubMed ID: 19098352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal combination of anti-scatter grids and software correction for CBCT imaging.
    Stankovic U; Ploeger LS; van Herk M; Sonke JJ
    Med Phys; 2017 Sep; 44(9):4437-4451. PubMed ID: 28556204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scatter Reduction and Correction for Dual-Source Cone-Beam CT Using Prepatient Grids.
    Ren L; Chen Y; Zhang Y; Giles W; Jin J; Yin FF
    Technol Cancer Res Treat; 2016 Jun; 15(3):416-27. PubMed ID: 26009495
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [A new method for eliminating scatter components from a digital X-ray image by later processing].
    Kato H
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2006 Sep; 62(9):1359-68. PubMed ID: 17013372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Invention of Optical Sight in Mobile Radiography with Anti-scatter Grid].
    Nakano T
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2019; 75(12):1420-1425. PubMed ID: 31866640
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Improvement of the Radiographic Contrast in Off-center Radiography with Focused Grid].
    Nakano T
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2018 Dec; 74(12):1412-1418. PubMed ID: 30568091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.
    Choi S; Lee H; Lee D; Choi S; Lee CL; Kwon W; Shin J; Seo CW; Kim HJ
    Med Phys; 2018 May; 45(5):1871-1888. PubMed ID: 29500855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating radiographic parameters for mobile chest computed radiography: phantoms, image quality and effective dose.
    Rill LN; Brateman L; Arreola M
    Med Phys; 2003 Oct; 30(10):2727-35. PubMed ID: 14596311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.