These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 33368461)
21. Diffusible and volatile organic compounds produced by avocado rhizobacteria exhibit antifungal effects against Fusarium kuroshium. Guevara-Avendaño E; Bravo-Castillo KR; Monribot-Villanueva JL; Kiel-Martínez AL; Ramírez-Vázquez M; Guerrero-Analco JA; Reverchon F Braz J Microbiol; 2020 Sep; 51(3):861-873. PubMed ID: 32166656 [TBL] [Abstract][Full Text] [Related]
22. Characterization and Synergistic Effect of Antifungal Volatile Organic Compounds Emitted by the Geotrichum candidum PF005, an Endophytic Fungus from the Eggplant. Mookherjee A; Bera P; Mitra A; Maiti MK Microb Ecol; 2018 Apr; 75(3):647-661. PubMed ID: 28894891 [TBL] [Abstract][Full Text] [Related]
23. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens. Wu Y; Zhou J; Li C; Ma Y Microbiologyopen; 2019 Aug; 8(8):e00813. PubMed ID: 30907064 [TBL] [Abstract][Full Text] [Related]
24. Antifungal Mechanism of Volatile Organic Compounds Produced by Wang K; Qin Z; Wu S; Zhao P; Zhen C; Gao H J Agric Food Chem; 2021 May; 69(17):5267-5278. PubMed ID: 33899461 [No Abstract] [Full Text] [Related]
25. Effect of Headspace and Trapped Volatile Organic Compounds (VOCs) of the Chinese Caterpillar Mushroom, Ophiocordyceps sinensis (Ascomycetes), against Soil-Borne Plant Pathogens. Sangeetha C; Krishnamoorthy AS; Kumar NK; Pravin IA Int J Med Mushrooms; 2018; 20(9):825-835. PubMed ID: 30317977 [TBL] [Abstract][Full Text] [Related]
26. Antagonism of volatile organic compounds of the Bacillus sp. against Fusarium kalimantanense. Santos JEÁ; de Brito MV; Pimenta ATÁ; da Silva GS; Zocolo GJ; Muniz CR; de Medeiros SC; Grangeiro TB; Lima MAS; da Silva CFB World J Microbiol Biotechnol; 2022 Dec; 39(2):60. PubMed ID: 36574179 [TBL] [Abstract][Full Text] [Related]
27. Antifungal Volatile Organic Compounds from the Endophyte Nodulisporium sp. Strain GS4d2II1a: a Qualitative Change in the Intraspecific and Interspecific Interactions with Pythium aphanidermatum. Sánchez-Fernández RE; Diaz D; Duarte G; Lappe-Oliveras P; Sánchez S; Macías-Rubalcava ML Microb Ecol; 2016 Feb; 71(2):347-64. PubMed ID: 26408189 [TBL] [Abstract][Full Text] [Related]
28. Antifungal Effects of Volatiles Produced by Zhang D; Yu S; Yang Y; Zhang J; Zhao D; Pan Y; Fan S; Yang Z; Zhu J Front Microbiol; 2020; 11():1196. PubMed ID: 32625175 [TBL] [Abstract][Full Text] [Related]
29. Zhou M; Li P; Wu S; Zhao P; Gao H Front Microbiol; 2019; 10():1804. PubMed ID: 31440224 [TBL] [Abstract][Full Text] [Related]
30. Volatile organic compounds profile synthesized and released by endophytes of tomato (Solanum lycopersici L.) and their antagonistic role. López SMY; Pastorino GN; Balatti PA Arch Microbiol; 2021 May; 203(4):1383-1397. PubMed ID: 33386869 [TBL] [Abstract][Full Text] [Related]
31. Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. through mycoparasitism and volatile organic compounds. Rajani P; Rajasekaran C; Vasanthakumari MM; Olsson SB; Ravikanth G; Uma Shaanker R Microbiol Res; 2021 Jan; 242():126595. PubMed ID: 33017769 [TBL] [Abstract][Full Text] [Related]
32. Hanseniaspora uvarum prolongs shelf life of strawberry via volatile production. Qin X; Xiao H; Cheng X; Zhou H; Si L Food Microbiol; 2017 May; 63():205-212. PubMed ID: 28040170 [TBL] [Abstract][Full Text] [Related]
33. Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. Guevara-Avendaño E; Bejarano-Bolívar AA; Kiel-Martínez AL; Ramírez-Vázquez M; Méndez-Bravo A; von Wobeser EA; Sánchez-Rangel D; Guerrero-Analco JA; Eskalen A; Reverchon F Microbiol Res; 2019 Feb; 219():74-83. PubMed ID: 30642469 [TBL] [Abstract][Full Text] [Related]
34. Volatile organic compounds (VOCs) from Bacillus subtilis CF-3 reduce anthracnose and elicit active defense responses in harvested litchi fruits. Zhao P; Li P; Wu S; Zhou M; Zhi R; Gao H AMB Express; 2019 Jul; 9(1):119. PubMed ID: 31352537 [TBL] [Abstract][Full Text] [Related]
35. Volatile organic compounds of Bacillus atrophaeus HAB-5 inhibit the growth of Colletotrichum gloeosporioides. Rajaofera MJN; Wang Y; Dahar GY; Jin P; Fan L; Xu L; Liu W; Miao W Pestic Biochem Physiol; 2019 May; 156():170-176. PubMed ID: 31027577 [TBL] [Abstract][Full Text] [Related]
36. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Guo Q; Dong W; Li S; Lu X; Wang P; Zhang X; Wang Y; Ma P Microbiol Res; 2014; 169(7-8):533-40. PubMed ID: 24380713 [TBL] [Abstract][Full Text] [Related]
37. Biocontrol potential of volatile organic compounds produced by Streptomyces corchorusii CG-G2 to strawberry anthracnose caused by Colletotrichum gloeosporioides. Li X; Zhang L; Zhao Y; Feng J; Chen Y; Li K; Zhang M; Qi D; Zhou D; Wei Y; Wang W; Xie J Food Chem; 2024 Mar; 437(Pt 2):137938. PubMed ID: 37948803 [TBL] [Abstract][Full Text] [Related]
38. Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against gray, green and blue postharvest decays. Parafati L; Vitale A; Restuccia C; Cirvilleri G Food Microbiol; 2017 May; 63():191-198. PubMed ID: 28040168 [TBL] [Abstract][Full Text] [Related]
39. Perfume Guns: Potential of Yeast Volatile Organic Compounds in the Biological Control of Mycotoxin-Producing Fungi. Oufensou S; Ul Hassan Z; Balmas V; Jaoua S; Migheli Q Toxins (Basel); 2023 Jan; 15(1):. PubMed ID: 36668865 [TBL] [Abstract][Full Text] [Related]
40. Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Minerdi D; Bossi S; Gullino ML; Garibaldi A Environ Microbiol; 2009 Apr; 11(4):844-54. PubMed ID: 19396945 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]