These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33368695)

  • 61. The RNA-binding protein Seb4/RBM24 is a direct target of MyoD and is required for myogenesis during Xenopus early development.
    Li HY; Bourdelas A; Carron C; Shi DL
    Mech Dev; 2010; 127(5-6):281-91. PubMed ID: 20338237
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Xema, a foxi-class gene expressed in the gastrula stage Xenopus ectoderm, is required for the suppression of mesendoderm.
    Suri C; Haremaki T; Weinstein DC
    Development; 2005 Jun; 132(12):2733-42. PubMed ID: 15901660
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Xenopus fibrillin regulates directed convergence and extension.
    Skoglund P; Keller R
    Dev Biol; 2007 Jan; 301(2):404-16. PubMed ID: 17027959
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Developmental analysis of activin-like kinase receptor-4 (ALK4) expression in Xenopus laevis.
    Chen Y; Whitaker LL; Ramsdell AF
    Dev Dyn; 2005 Feb; 232(2):393-8. PubMed ID: 15614766
    [TBL] [Abstract][Full Text] [Related]  

  • 65. FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development.
    Steiner AB; Engleka MJ; Lu Q; Piwarzyk EC; Yaklichkin S; Lefebvre JL; Walters JW; Pineda-Salgado L; Labosky PA; Kessler DS
    Development; 2006 Dec; 133(24):4827-38. PubMed ID: 17092955
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos.
    Kao KR; Elinson RP
    Dev Biol; 1988 May; 127(1):64-77. PubMed ID: 3282938
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Interaction of EphB2-tyrosine kinase receptor and its ligand conveys dorsalization signal in Xenopus laevis development.
    Tanaka M; Wang DY; Kamo T; Igarashi H; Wang Y; Xiang YY; Tanioka F; Naito Y; Sugimura H
    Oncogene; 1998 Sep; 17(12):1509-16. PubMed ID: 9794228
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The pattern of retinoic acid receptor gamma (RAR gamma) expression in normal development of Xenopus laevis and after manipulation of the main body axis.
    Ellinger-Ziegelbauer H; Dreyer C
    Mech Dev; 1993 Apr; 41(1):33-46. PubMed ID: 8389582
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Induction and patterning of the telencephalon in Xenopus laevis.
    Lupo G; Harris WA; Barsacchi G; Vignali R
    Development; 2002 Dec; 129(23):5421-36. PubMed ID: 12403713
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Role of BMP-4 in the inducing ability of the head organizer in Xenopus laevis.
    Sedohara A; Fukui A; Michiue T; Asashima M
    Zoolog Sci; 2002 Jan; 19(1):67-80. PubMed ID: 12025406
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The prickle-related gene in vertebrates is essential for gastrulation cell movements.
    Takeuchi M; Nakabayashi J; Sakaguchi T; Yamamoto TS; Takahashi H; Takeda H; Ueno N
    Curr Biol; 2003 Apr; 13(8):674-9. PubMed ID: 12699625
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Morphomechanical Factors in Gastrulation Process and Differentiation of Embryonic Tissue of Xenopus laevis].
    Vasilegina YI; Kremnev SV; Nikishin DA
    Ontogenez; 2017; 48(1):39-45. PubMed ID: 30272924
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Comparison of Lim1 expression in embryos of frogs with different modes of reproduction.
    Venegas-Ferrín M; Sudou N; Taira M; del Pino EM
    Int J Dev Biol; 2010; 54(1):195-202. PubMed ID: 19876816
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Xenopus ILK (integrin-linked kinase) is required for morphogenetic movements during gastrulation.
    Yasunaga T; Kusakabe M; Yamanaka H; Hanafusa H; Masuyama N; Nishida E
    Genes Cells; 2005 Apr; 10(4):369-79. PubMed ID: 15773899
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Bighead is a Wnt antagonist secreted by the
    Ding Y; Colozza G; Sosa EA; Moriyama Y; Rundle S; Salwinski L; De Robertis EM
    Proc Natl Acad Sci U S A; 2018 Sep; 115(39):E9135-E9144. PubMed ID: 30209221
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A Xenopus nodal-related gene that acts in synergy with noggin to induce complete secondary axis and notochord formation.
    Lustig KD; Kroll K; Sun E; Ramos R; Elmendorf H; Kirschner MW
    Development; 1996 Oct; 122(10):3275-82. PubMed ID: 8898239
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm.
    Kikkawa M; Yamazaki M; Izutsu Y; Maéno M
    Int J Dev Biol; 2001 Apr; 45(2):387-96. PubMed ID: 11330858
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Induction of anteroposterior neural pattern in Xenopus by planar signals.
    Doniach T
    Dev Suppl; 1992; ():183-93. PubMed ID: 1363721
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Graded amounts of Xenopus dishevelled specify discrete anteroposterior cell fates in prospective ectoderm.
    Itoh K; Sokol SY
    Mech Dev; 1997 Jan; 61(1-2):113-25. PubMed ID: 9076682
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A microtubule-binding Rho-GEF controls cell morphology during convergent extension of Xenopus laevis.
    Kwan KM; Kirschner MW
    Development; 2005 Oct; 132(20):4599-610. PubMed ID: 16176947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.