BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33368920)

  • 1. Metal-Organic Framework Decorated Cuprous Oxide Nanowires for Long-lived Charges Applied in Selective Photocatalytic CO
    Wu H; Kong XY; Wen X; Chai SP; Lovell EC; Tang J; Ng YH
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8455-8459. PubMed ID: 33368920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Well-Defined Cu
    Jia K; Ye J; Zhuang G; Zhuang Z; Yu Y
    Small; 2019 Apr; 15(17):e1805478. PubMed ID: 30920763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tube-like dual Z-scheme indium oxide@indium phosphide/cuprous oxide photocatalyst based on metal-organic framework for efficient CO
    Wang Y; Xu J; Wan J; Wang J; Wang L
    J Colloid Interface Sci; 2022 Jun; 616():532-539. PubMed ID: 35231702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulating Perovskite Quantum Dots in Iron-Based Metal-Organic Frameworks (MOFs) for Efficient Photocatalytic CO
    Wu LY; Mu YF; Guo XX; Zhang W; Zhang ZM; Zhang M; Lu TB
    Angew Chem Int Ed Engl; 2019 Jul; 58(28):9491-9495. PubMed ID: 31066965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of Cu
    Samuel MS; Suman S; Venkateshkannan ; Selvarajan E; Mathimani T; Pugazhendhi A
    J Photochem Photobiol B; 2020 Mar; 204():111809. PubMed ID: 32062390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable Aqueous Photoelectrochemical CO2 Reduction by a Cu2 O Dark Cathode with Improved Selectivity for Carbonaceous Products.
    Chang X; Wang T; Zhang P; Wei Y; Zhao J; Gong J
    Angew Chem Int Ed Engl; 2016 Jul; 55(31):8840-5. PubMed ID: 27199242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guest-Induced Multilevel Charge Transport Strategy for Developing Metal-Organic Frameworks to Boost Photocatalytic CO
    Zhao Y; Shao Z; Cui Y; Geng K; Meng X; Wu J; Hou H
    Small; 2023 Aug; 19(34):e2300398. PubMed ID: 37093463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting the photocatalytic CO
    Li S; Ji K; Zhang M; He C; Wang J; Li Z
    Nanoscale; 2020 May; 12(17):9533-9540. PubMed ID: 32315014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Functionality of Surface Hydroxy Groups on the Selectivity and Activity of Carbon Dioxide Reduction over Cuprous Oxide in Aqueous Solutions.
    Yang P; Zhao ZJ; Chang X; Mu R; Zha S; Zhang G; Gong J
    Angew Chem Int Ed Engl; 2018 Jun; 57(26):7724-7728. PubMed ID: 29673029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Innovation of Metal-Organic Frameworks for Carbon Dioxide Photocatalytic Reduction.
    Kidanemariam A; Lee J; Park J
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31847223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in visible-light-driven carbon dioxide reduction by metal-organic frameworks.
    Nemiwal M; Subbaramaiah V; Zhang TC; Kumar D
    Sci Total Environ; 2021 Mar; 762():144101. PubMed ID: 33360464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable Heterometallic Cluster-Based Organic Framework Catalysts for Artificial Photosynthesis.
    Dong LZ; Zhang L; Liu J; Huang Q; Lu M; Ji WX; Lan YQ
    Angew Chem Int Ed Engl; 2020 Feb; 59(7):2659-2663. PubMed ID: 31797510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular simulations for adsorptive separation of CO2/CH4 mixture in metal-exposed, catenated, and charged metal-organic frameworks.
    Babarao R; Jiang J; Sandler SI
    Langmuir; 2009 May; 25(9):5239-47. PubMed ID: 19099354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acceleration of Photoinduced Electron Transfer by Modulating Electronegativity of Substituents in Stable Zr-Metal-Organic Frameworks to Boost Photocatalytic CO
    Wang K; Yan B; Zhou B; Zhang Y; Lin GL; Zhang TS; Zhou M; Shen HM; Yang YF; Xia J; Li H; She Y
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):33601-33610. PubMed ID: 38889009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on photocatalytic CO(2) reduction over NH2 -Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks.
    Sun D; Fu Y; Liu W; Ye L; Wang D; Yang L; Fu X; Li Z
    Chemistry; 2013 Oct; 19(42):14279-85. PubMed ID: 24038375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inorganic Nanoparticles/Metal Organic Framework Hybrid Membrane Reactors for Efficient Photocatalytic Conversion of CO
    Maina JW; Schütz JA; Grundy L; Des Ligneris E; Yi Z; Kong L; Pozo-Gonzalo C; Ionescu M; Dumée LF
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35010-35017. PubMed ID: 28937742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-Free Photocatalytic CO
    Zou W; Cheng Y; Ye YX; Wei X; Tong Q; Dong L; Ouyang G
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202313392. PubMed ID: 37853513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for improving the photocatalytic performance of metal-organic frameworks for CO
    Guo K; Hussain I; Jie GA; Fu Y; Zhang F; Zhu W
    J Environ Sci (China); 2023 Mar; 125():290-308. PubMed ID: 36375915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epitaxial Single-Domain Cu-BTC Metal-Organic Framework Thin Films and Foils by Electrochemical Conversion of Cuprous Oxide.
    Zhang X; Luo B; Banik A; Tubbesing JZ; Switzer JA
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):18440-18449. PubMed ID: 37011229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Electrochemical Synthesis of Metal-Organic Frameworks: Cu
    Araújo-Cordero AM; Caddeo F; Mahmoudi B; Bron M; Wouter Maijenburg A
    Chempluschem; 2024 Mar; 89(3):e202300378. PubMed ID: 37997644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.